Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2024): 20240876, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864319

RESUMO

The joint actions of animals in partnerships or social groups evolve under both natural selection from the wider environment and social selection imposed by other members of the pair or group. We used experimental evolution to investigate how jointly expressed actions evolve upon exposure to a new environmental challenge. Our work focused on the evolution of carrion nest preparation by pairs of burying beetles Nicrophorus vespilloides, a joint activity undertaken by the pair but typically led by the male. In previous work, we found that carrion nest preparation evolved to be faster in experimental populations without post-hatching care (No Care: NC lines) than with post-hatching care (Full Care: FC lines). Here, we investigate how this joint activity evolved. After 15 generations of experimental evolution, we created heterotypic pairs (NC females with FC males and NC males with FC females) and compared their carrion nest making with homotypic NC and FC pairs. We found that pairs with NC males prepared the nest more rapidly than pairs with FC males, regardless of the female's line of origin. We discuss how social coadaptations within pairs or groups could act as a post-mating barrier to gene flow.


Assuntos
Besouros , Comportamento de Nidação , Animais , Masculino , Feminino , Besouros/fisiologia , Seleção Genética , Comportamento Social , Evolução Biológica , Comportamento Materno , Comportamento Paterno
2.
Ecol Evol ; 12(4): e8829, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35441005

RESUMO

The overproduction of offspring is commonly associated with high hatching failure and a mechanism for dispensing with surplus young. We used experimental evolution of burying beetle populations Nicrophorus vespilloides to determine causality in these correlations. We asked does eliminating the mechanism for killing "spare" offspring cause the evolution of a more restrained clutch size and consequently select for reduced hatching failure? N. vespilloides typically overproduces eggs but kills 1st instar larvae through partial filial cannibalism during brood care. We established replicate evolving populations that either could practice filial cannibalism (Full Care) or could not, by removing parents before their young hatched (No Care). After 20+ generations of experimental evolution, we measured clutch size and hatching success. We found that No Care females produced fewer eggs than Full Care females when allowed to breed on a small corpse, a finding not explained by differences in female quality. On larger corpses, females from both populations laid similar numbers of eggs. Furthermore, hatching success was greater in the No Care populations on small corpses. Our results suggest that the adaptive overproduction of offspring depends on a mechanism for eliminating surplus young and that killing offspring, in turn, relaxes selection against hatching failure.

3.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819363

RESUMO

Parental care can be partitioned into traits that involve direct engagement with offspring and traits that are expressed as an extended phenotype and influence the developmental environment, such as constructing a nursery. Here, we use experimental evolution to test whether parents can evolve modifications in nursery construction when they are experimentally prevented from supplying care directly to offspring. We exposed replicate experimental populations of burying beetles (Nicrophorus vespilloides) to different regimes of posthatching care by allowing larvae to develop in the presence (Full Care) or absence of parents (No Care). After only 13 generations of experimental evolution, we found an adaptive evolutionary increase in the pace at which parents in the No Care populations converted a dead body into a carrion nest for larvae. Cross-fostering experiments further revealed that No Care larvae performed better on a carrion nest prepared by No Care parents than did Full Care larvae. We conclude that parents construct the nursery environment in relation to their effectiveness at supplying care directly, after offspring are born. When direct care is prevented entirely, they evolve to make compensatory adjustments to the nursery in which their young will develop. The rapid evolutionary change observed in our experiments suggests there is considerable standing genetic variation for parental care traits in natural burying beetle populations-for reasons that remain unclear.


Assuntos
Comportamento Materno/psicologia , Privação Materna , Relações Pais-Filho , Adaptação Psicológica/fisiologia , Animais , Comportamento Animal , Evolução Biológica , Besouros/fisiologia , Feminino , Larva , Comportamento Materno/fisiologia , Fenótipo , Gravidez
4.
Sci Rep ; 11(1): 7751, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833245

RESUMO

Numerous cases of evolutionary trait loss and regain have been reported over the years. Here, we argue that such reverse evolution can also become apparent when trait expression is plastic in response to the environment. We tested this idea for the loss and regain of fat synthesis in parasitic wasps. We first show experimentally that the wasp Leptopilina heterotoma switches lipogenesis on in a fat-poor environment, and completely off in a fat-rich environment. Plasticity suggests that this species did not regain fat synthesis, but that it can be switched off in some environmental settings. We then compared DNA sequence variation and protein domains of several more distantly related parasitoid species thought to have lost lipogenesis, and found no evidence for non-functionality of key lipogenesis genes. This suggests that other parasitoids may also show plasticity of fat synthesis. Last, we used individual-based simulations to show that a switch for plastic expression can remain functional in the genome for thousands of generations, even if it is only used sporadically. The evolution of plasticity could thus also explain other examples of apparent reverse evolution.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Gorduras/metabolismo , Lipogênese , Vespas/fisiologia , Animais , Vespas/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(5): 2544-2550, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964847

RESUMO

Sibling rivalry is commonplace within animal families, yet offspring can also work together to promote each other's fitness. Here we show that the extent of parental care can determine whether siblings evolve to compete or to cooperate. Our experiments focus on the burying beetle Nicrophorus vespilloides, which naturally provides variable levels of care to its larvae. We evolved replicate populations of burying beetles under two different regimes of parental care: Some populations were allowed to supply posthatching care to their young (Full Care), while others were not (No Care). After 22 generations of experimental evolution, we found that No Care larvae had evolved to be more cooperative, whereas Full Care larvae were more competitive. Greater levels of cooperation among larvae compensated for the fitness costs caused by parental absence, whereas parental care fully compensated for the fitness costs of sibling rivalry. We dissected the evolutionary mechanisms underlying these responses by measuring indirect genetic effects (IGEs) that occur when different sibling social environments induce the expression of more cooperative (or more competitive) behavior in focal larvae. We found that indirect genetic effects create a tipping point in the evolution of larval social behavior. Once the majority of offspring in a brood start to express cooperative (or competitive) behavior, they induce greater levels of cooperation (or competition) in their siblings. The resulting positive feedback loops rapidly lock larvae into evolving greater levels of cooperation in the absence of parental care and greater levels of rivalry when parents provide care.


Assuntos
Besouros/fisiologia , Animais , Comportamento Animal , Evolução Biológica , Besouros/genética , Besouros/crescimento & desenvolvimento , Comportamento Competitivo , Comportamento Cooperativo , Feminino , Larva/genética , Larva/crescimento & desenvolvimento , Masculino
6.
Nat Commun ; 9(1): 3987, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266903

RESUMO

Although cooperative social interactions within species are considered an important driver of evolutionary change, few studies have experimentally demonstrated that they cause adaptive evolution. Here we address this problem by studying the burying beetle Nicrophorus vespilloides. In this species, parents and larvae work together to obtain nourishment for larvae from the carrion breeding resource: parents feed larvae and larvae also self-feed. We established experimentally evolving populations in which we varied the assistance that parents provided for their offspring and investigated how offspring evolved in response. We show that in populations where parents predictably supplied more care, larval mandibles evolved to be smaller in relation to larval mass, and larvae were correspondingly less self-sufficient. Previous work has shown that antagonistic social interactions can generate escalating evolutionary arms races. Our study shows that cooperative interactions can yield the opposite evolutionary outcome: when one party invests more, the other evolves to invest less.


Assuntos
Adaptação Fisiológica/fisiologia , Besouros/fisiologia , Comportamento Cooperativo , Comportamento Alimentar/fisiologia , Animais , Evolução Biológica , Peso Corporal/fisiologia , Feminino , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Mandíbula/crescimento & desenvolvimento , Mandíbula/fisiologia
7.
Proc Biol Sci ; 285(1885)2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158310

RESUMO

Interactions among siblings are finely balanced between rivalry and cooperation, but the factors that tip the balance towards cooperation are incompletely understood. Previous observations of insect species suggest that (i) sibling cooperation is more likely when siblings hatch at the same time, and (ii) this is more common when parents provide little to no care. In this paper, we tested these ideas experimentally with the burying beetle, Nicrophorus vespilloides Burying beetles convert the body of a small dead vertebrate into an edible nest for their larvae, and provision and guard their young after hatching. In our first experiment, we simulated synchronous or asynchronous hatching by adding larvae at different intervals to the carrion-breeding resource. We found that 'synchronously' hatched broods survived better than 'asynchronously' hatched broods, probably because 'synchronous hatching' generated larger teams of larvae, that together worked more effectively to penetrate the carrion nest and feed upon it. In our second experiment, we measured the synchronicity of hatching in experimental populations that had evolved for 22 generations without any post-hatching care, and control populations that had evolved in parallel with post-hatching care. We found that larvae were more likely to hatch earlier, and at the same time as their broodmates, in the experimental populations that evolved without post-hatching care. We suggest that synchronous hatching enables offspring to help each other when parents are not present to provide care. However, we also suggest that greater levels of cooperation among siblings cannot compensate fully for the loss of parental care.


Assuntos
Adaptação Biológica , Comportamento Animal , Evolução Biológica , Besouros/fisiologia , Animais , Besouros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Comportamento Materno , Reprodução
8.
Proc Biol Sci ; 284(1862)2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28878064

RESUMO

Cryptic evolution occurs when evolutionary change is masked by concurrent environmental change. In most cases, evolutionary changes in the phenotype are masked by changing abiotic factors. However, evolutionary change in one trait might also be masked by evolutionary change in another trait, a phenomenon referred to as evolutionary environmental deterioration. Nevertheless, detecting this second type of cryptic evolution is challenging and there are few compelling examples. Here, we describe a likely case of evolutionary environmental deterioration occurring in experimental burying beetle (Nicrophorus vespilloides) populations that are adapting to a novel social environment that lacks post-hatching parental care. We found that populations rapidly adapted to the removal of post-hatching parental care. This adaptation involved clear increases in breeding success and larval density (number of dispersing larvae produced per gram of breeding carcass), which in turn masked a concurrent increase in the mean larval mass across generations. This cryptic increase in larval mass was accomplished through a change in the reaction norm that relates mean larval mass to larval density. Our results suggest that cryptic evolution might be commonplace in animal families, because evolving trophic and social interactions can potentially mask evolutionary change in other traits, like body size.


Assuntos
Adaptação Fisiológica/genética , Besouros/genética , Meio Social , Animais , Besouros/fisiologia , Larva , Fenótipo
9.
Nat Ecol Evol ; 1(7): 0178, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28685165

RESUMO

Classical models of evolution seldom predict the rate at which populations evolve in the wild. One explanation is that the social environment affects how traits change in response to natural selection. Here, we determine how social interactions between parents and offspring, and among larvae, influence the response to experimental selection on adult size. Our experiments focus on burying beetles (Nicrophorus vespilloides), whose larvae develop within a carrion nest. Some broods exclusively self-feed on the carrion while others are also fed by their parents. We found populations responded to selection for larger adults but only when parents cared for their offspring. We also found populations responded to selection for smaller adults too, but only by removing parents and causing larval interactions to exert more influence on eventual adult size. Comparative analyses revealed a similar pattern: evolutionary increases in species size within the genus Nicrophorus are associated with the obligate provision of care. Synthesising our results with previous studies, we suggest that cooperative social environments enhance the response to selection whereas excessive conflict can prevent further directional selection.

10.
Evolution ; 69(3): 602-10, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25611556

RESUMO

Sexual selection acting on small initial differences in mating signals and mate preferences can enhance signal-preference codivergence and reproductive isolation during speciation. However, the origin of initial differences in sexual traits remains unclear. We asked whether biotic environments, a source of variation in sexual traits, may provide a general solution to this problem. Specifically, we asked whether genetic variation in biotic environments provided by host plants can result in signal-preference phenotypic covariance in a host-specific, plant-feeding insect. We used a member of the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae) to assess patterns of variation in male mating signals and female mate preferences induced by genetic variation in host plants. We employed a novel implementation of a quantitative genetics method, rearing field-collected treehoppers on a sample of naturally occurring replicated host plant clone lines. We found remarkably high signal-preference covariance among host plant genotypes. Thus, genetic variation in biotic environments influences the sexual phenotypes of organisms living on those environments in a way that promotes assortative mating among environments. This consequence arises from conditions likely to be common in nature (phenotypic plasticity and variation in biotic environments). It therefore offers a general answer to how divergent sexual selection may begin.


Assuntos
Evolução Biológica , Hemípteros/fisiologia , Preferência de Acasalamento Animal , Plantas/classificação , Comunicação Animal , Animais , Biota , Feminino , Variação Genética , Genótipo , Hemípteros/genética , Masculino , Fenótipo
11.
Am Nat ; 184(4): 489-99, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25226184

RESUMO

Many species spend their lives in close association with other organisms, and the environments provided by those organisms can play an important role as causes of variation in phenotypes. When this is the case, the genotypes of the individuals constituting the environment may influence the phenotypes of individuals living in that environment. When these effects are between heterospecifics, interspecific indirect genetic effects (IIGEs) occur. Several studies have detected IIGEs, but whether IIGEs contribute to variation in sexually selected traits remains virtually unexplored. We assessed how mate preferences in a plant-feeding insect are influenced by the genotype of their host plant. We established clone lines of a sample of host plant genotypes constituting the background biotic environment for a random sample of insects that we reared on them. We found that the insects' mate preferences varied according to the clone line on which they developed. These results demonstrate that genetic variation in host plants has cross-trophic consequences on a trait that has strong effects on fitness and interpopulation dynamics such as diversification in communication systems. We discuss how IIGEs on mate preferences may influence the way in which selection acts, including the maintenance of variation and the promotion of evolutionary divergence.


Assuntos
Variação Genética , Hemípteros/fisiologia , Herbivoria , Preferência de Acasalamento Animal , Viburnum/genética , Animais , Feminino , Masculino , Fenótipo
12.
Ecol Lett ; 17(2): 203-10, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24350855

RESUMO

Community genetics research has demonstrated 'bottom-up' effects of genetic variation within a plant species in shaping the larger community with which it interacts, such as compositions of arthropod faunas. We demonstrate that such cross-trophic interactions also influence sexually selected traits. We used a member of the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae) to ask whether male mating signals are influenced by host plant genetic variation. We reared a random sample of the treehoppers on potted replicates of a sample of host plant clone lines. We found that treehopper male signals varied according to the clone line on which they developed, showing that genetic variation in host plants affects male treehoppers' behavioural phenotypes. This is the first demonstration of cross-trophic indirect genetic effects on a sexually selected trait. We discuss how such effects may play an important role in the maintenance of variation and within-population phenotypic differentiation, thereby promoting evolutionary divergence.


Assuntos
Comunicação Animal , Variação Genética , Hemípteros/genética , Herbivoria , Comportamento Sexual Animal , Viburnum/genética , Animais , Feminino , Masculino , Análise de Componente Principal , Árvores/genética
13.
Proc Biol Sci ; 280(1763): 20130803, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23698010

RESUMO

Patterns of phenotypic variation arise in part from plasticity owing to social interactions, and these patterns contribute, in turn, to the form of selection that shapes the variation we observe in natural populations. This proximate-ultimate dynamic brings genetic variation in social environments to the forefront of evolutionary theory. However, the extent of this variation remains largely unknown. Here, we use a member of the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae) to assess how mate preferences are influenced by genetic variation in the social environment. We used full-sibling split-families as 'treatment' social environments, and reared focal females alongside each treatment family, describing the mate preferences of the focal females. With this method, we detected substantial genetic variation in social influence on mate preferences. The mate preferences of focal females varied according to the treatment families along with which they grew up. We discuss the evolutionary implications of the presence of such genetic variation in social influence on mate preferences, including potential contributions to the maintenance of genetic variation, the promotion of divergence, and the adaptive evolution of social effects on fitness-related traits.


Assuntos
Variação Genética , Hemípteros/genética , Preferência de Acasalamento Animal , Meio Social , Comunicação Animal , Animais , Evolução Biológica , Feminino , Hemípteros/fisiologia , Masculino , Preferência de Acasalamento Animal/fisiologia , Fenótipo , Comportamento Sexual Animal
14.
J Exp Biol ; 215(Pt 20): 3513-8, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22811251

RESUMO

Substrate-borne vibrational communication is a common form of communication in animals. Current contact-based playback methods limit the number of substrates that can be stimulated simultaneously and potentially change the transmission properties of the substrate. Here, we explore a solution to these limitations by broadcasting airborne stimuli onto plant substrates to impart vibrational playbacks. We demonstrate that one can effectively compensate for the filtering properties of any individual plant across a range of frequencies. We then address how well both compensated broad-band and pure-tone stimuli for one plant individual apply to other individuals across days. Variation within and between plants was similar across the range tested but was quite variable at certain frequencies. Focusing on a subset of this range, at low frequencies, responses were flat across days and pure-tone frequency stimuli in this range were consistently transmitted despite repositioning of plants relative to the loudspeaker. Our results present a potential solution to researchers interested in exposing large samples of individuals to vibrational signals but also highlight the importance of validating the use of airborne stimuli as vibrational playbacks to the particular substrate type and frequency range of interest.


Assuntos
Hemípteros/fisiologia , Som , Estresse Fisiológico , Vibração , Viburnum/fisiologia , Comunicação Animal , Animais , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...