Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 33(39): 10385-10401, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28877444

RESUMO

Membrane proteins exhibiting extra- and intracellular domains require an adequate near-native lipid platform for their functional reconstitution. With this aim, we developed a new technology enabling the formation of a peptide-tethered bilayer lipid membrane (pep-tBLM), a lipid bilayer grafted onto peptide spacers, by way of a metal-chelate interaction. To this end, we designed an original peptide spacer derived from the natural α-laminin thiopeptide (P19) possessing a cysteine residue in the N-terminal extremity for grafting onto gold and a C-terminal extremity modified by four histidine residues (P19-4H). In the presence of nickel, the use of this anchor allowed us to bind liposomes of variable compositions containing a 2% molar ratio of a chelating lipid, 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] so-called DOGS-NTA, and to form the planar bilayer by triggering liposome fusion by an α-helical (AH) peptide derived from the N-terminus of the hepatitis C virus NS5A protein. The formation of pep-tBLMs was characterized by surface plasmon resonance imaging (SPRi), and their continuity, fluidity, and homogeneity were demonstrated by fluorescence recovery after photobleaching (FRAP), with a diffusion coefficient of 2.5 × 10-7 cm2/s, and atomic force microscopy (AFM). By using variable lipid compositions including phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol 4,5-bisphosphate (PIP2), sphingomyelin (SM), phosphatidic acid (PA), and cholesterol (Chol) in various ratios, we show that the membrane can be formed independently from the lipid composition. We made the most of this advantage to reincorporate a transmembrane protein in an adapted complex lipid composition to ensure its functional reinsertion. For this purpose, a cell-free expression system was used to produce proteoliposomes expressing the functional C-X-C motif chemokine receptor 4 (CXCR4), a seven-transmembrane protein belonging to the large superfamily of G-protein-coupled receptors (GPCRs). We succeeded in reinserting CXCR4 in pep-tBLMs formed on P19-4H by the fusion of tethered proteoliposomes. AFM and FRAP characterization allowed us to show that pep-tBLMs inserting CXCR4 remained fluid, homogeneous, and continuous. The value of the diffusion coefficient determined in the presence of reinserted CXCR4 was 2 × 10-7 cm2/s. Ligand binding assays using a synthetic CXCR4 antagonist, T22 ([Tyr5,12, Lys7]-polyphemusin II), revealed that CXCR4 can be reinserted in pep-tBLMs with functional folding and orientation. This new approach represents a method of choice for investigating membrane protein reincorporation and a promising way of creating a new generation of membrane biochips adapted for screening agonists or antagonists of transmembrane proteins.


Assuntos
Fosfolipídeos/química , Bicamadas Lipídicas , Fosfatidilcolinas , Receptores Acoplados a Proteínas G
2.
J Liposome Res ; 25(2): 122-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25222643

RESUMO

Conventional liposomes have a short life-time in blood, unless they are protected by a polymer envelope, most often polyethylene glycol. However, these stabilizing polymers frequently interfere with cellular uptake, impede liposome-membrane fusion and inhibit escape of liposome content from endosomes. To overcome such drawbacks, polymer-based systems as carriers for liposomes are currently developed. Conforming to this approach, we propose a new and convenient method for embedding small size liposomes, 30-100 nm, inside porous calcium carbonate microparticles. These microparticles served as templates for deposition of various polyelectrolytes to form a protective shell. The carbonate particles were then dissolved to yield hollow polyelectrolyte microcapsules. The main advantage of using this method for liposome encapsulation is that carbonate particles can serve as a sacrificial template for deposition of virtually any polyelectrolyte. By carefully choosing the shell composition, bioavailability of the liposomes and of the encapsulated drug can be modulated to respond to biological requirements and to improve drug delivery to the cytoplasm and avoid endosomal escape.


Assuntos
Cápsulas/química , Portadores de Fármacos/química , Eletrólitos/química , Lipossomos/química , Polímeros/química , Carbonato de Cálcio/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
3.
Biochim Biophys Acta ; 1838(10): 2698-707, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25019684

RESUMO

VIsinin-LIke Proteins (VILIPs) are a subfamily of the Neuronal Calcium Sensor (NCS) proteins, which possess both N-myristoylation and EF-hand motifs allowing for a putative 'calcium-myristoyl switch' regulation mechanism. It has previously been established that myristoyl conjugation increases the affinity of proteins for membranes, but, in many cases, a second feature such as a cluster of positively-charged residues is needed for stable membrane binding. The interaction of two members of this family, VILIP-1 and VILIP-3, with Langmuir monolayers as membrane models has been investigated in order to study the effects of both myristoylation and the highly basic region containing conserved poly-lysine residues on membrane association kinetics and binding properties. Results show that in the presence of calcium, N-myristoylation significantly increases the kinetic rate of VILIP adsorption to the membrane. Additionally, the proteins bind to negatively charged phospholipids independently of the conjugated myristate moiety. Besides the regulatory effect of calcium on the rate of binding presumably due to exposure of the myristoyl moiety ascribed to their putative 'calcium-myristoyl switch', VILIP-1 and -3 also engage specific interactions with biomimetic membranes containing phosphatidylinositol 4,5-bisphosphate (PIP2). The presence of PIP2 increases the membrane association rates of both VILIPs. Taken together, these results show the major kinetic role of N-myristoylation for membrane binding, and highlight the critical role of specific phosphoinositide interactions for membrane association of members of the VILIP family.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Lipoilação , Membranas Artificiais , Neurocalcina/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Cálcio/química , Membrana Celular/química , Humanos , Neurocalcina/química , Fosfatos de Fosfatidilinositol/química
4.
Biochimie ; 107 Pt A: 135-42, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24998327

RESUMO

Biological membranes play a central role in the biology of the cell. They are not only the hydrophobic barrier allowing separation between two water soluble compartments but also a supra-molecular entity that has vital structural functions. Notably, they are involved in many exchange processes between the outside and inside cellular spaces. Accounting for the complexity of cell membranes, reliable models are needed to acquire current knowledge of the molecular processes occurring in membranes. To simplify the investigation of lipid/protein interactions, the use of biomimetic membranes is an approach that allows manipulation of the lipid composition of specific domains and/or the protein composition, and the evaluation of the reciprocal effects. Since the middle of the 80's, lipid bilayer membranes have been constantly developed as models of biological membranes with the ultimate goal to reincorporate membrane proteins for their functional investigation. In this review, after a brief description of the planar lipid bilayers as biomimetic membrane models, we will focus on the construction of the tethered Bilayer Lipid Membranes, the most promising model for efficient membrane protein reconstitution and investigation of molecular processes occurring in cell membranes.


Assuntos
Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Membrana Celular/química , Bicamadas Lipídicas/química , Lipossomos/química , Lipossomos/metabolismo , Lipídeos de Membrana/química , Proteínas de Membrana/química , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica
5.
PLoS One ; 9(4): e93948, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24699524

RESUMO

The neuronal calcium sensor proteins Visinin-like Proteins 1 (VILIP-1) and 3 (VILIP-3) are effectors of guanylyl cyclase and acetyl choline receptors, and transduce calcium signals in the brain. The "calcium-myristoyl" switch, which involves a post-translationally added myristoyl moiety and calcium binding, is thought to regulate their membrane binding capacity and therefore, play a critical role in their mechanism of action. In the present study, we investigated the effect of membrane composition and solvent conditions on the membrane binding mechanisms of both VILIPs using lipid monolayers at the air/buffer interface. Results based on comparison of the adsorption kinetics of the myristoylated and non-myristoylated proteins confirm the pivotal role of calcium and the exposed myristol moiety for sustaining the membrane-bound state of both VILIPs. However, we also observed binding of both VILIP proteins in the absence of calcium and/or myristoyl conjugation. We propose a two-stage membrane binding mechanism for VILIP-1 and VILIP-3 whereby the proteins are initially attracted to the membrane surface by electrostatic interactions and possibly by specific interactions with highly negatively charged lipids head groups. The extrusion of the conjugated myristoyl group, and the subsequent anchoring in the membrane constitutes the second stage of the binding mechanism, and ensures the sustained membrane-bound form of these proteins.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Neurocalcina/metabolismo , Fosfolipídeos/metabolismo , Escherichia coli/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...