Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-395079

RESUMO

We recently discovered a superantigen-like motif, similar to Staphylococcal enterotoxin B (SEB), near the S1/S2 cleavage site of SARS-CoV-2 Spike protein, which might explain the multisystem-inflammatory syndrome (MIS-C) observed in children and cytokine storm in severe COVID-19 patients. We show here that an anti-SEB monoclonal antibody (mAb), 6D3, can bind this viral motif, and in particular its PRRA insert, to inhibit infection by blocking the access of host cell proteases, TMPRSS2 or furin, to the cleavage site. The high affinity of 6D3 for the furin-cleavage site originates from a poly-acidic segment at its heavy chain CDR2, a feature shared with SARS-CoV-2-neutralizing mAb 4A8. The affinity of 6D3 and 4A8 for this site points to their potential utility as therapeutics for treating COVID-19, MIS-C, or common cold caused by human coronaviruses (HCoVs) that possess a furin-like cleavage site.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-372169

RESUMO

Multisystem Inflammatory Syndrome in Children (MIS-C), a hyperinflammatory syndrome associated with SARS-CoV-2 infection, shares many clinical features with toxic shock syndrome, which is triggered by bacterial superantigens. The superantigen specificity for binding different V{beta}-chains results in V{beta}-skewing, whereby T cells with specific V{beta}-chains and diverse antigen specificity are overrepresented in the TCR repertoire. Here, we characterized the TCR repertoire of MIS-C patients and found a profound expansion of TCR Beta Variable gene (TRBV)11-2. Furthermore, TRBV11-2 skewing was remarkably correlated with MIS-C severity and serum cytokine levels. Further analysis of TRBJ gene usage and CDR3 length distribution of MIS-C expanding TRBV11-2 clones revealed extensive junctional diversity, indicating a superantigen-mediated selection process for TRBV expansion. In silico modelling indicates that polyacidic residues in TCR V{beta}11-2 engage in strong interactions with the superantigen-like motif of SARS-CoV-2 spike glycoprotein. Overall, our data indicate that the immune response in MIS-C is consistent with superantigenic activation. HighlightsO_LIMultisystem Inflammatory Disease in Children (MIS-C) patients exhibit T cell receptor (TCR) repertoire skewing, with expansion of T cell Receptor Beta Variable gene (TRBV)11-2 C_LIO_LITRBV11-2 skewing correlates with MIS-C severity and cytokine storm C_LIO_LIJ gene/CDR3 diversity in MIS-C patients is compatible with a superantigen selection process C_LIO_LIIn silico modelling indicates TCR V{beta}11-2 engages in CDR3-independent interactions with the polybasic insert P681RRAR in the SAg-like motif of SARS-CoV-2 spike C_LI

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-109272

RESUMO

Multisystem Inflammatory Syndrome in Children (MIS-C) associated with Coronavirus Disease 2019 (COVID-19) is a newly recognized condition in which children with recent SARS-CoV-2 infection present with a constellation of symptoms including hypotension, multiorgan involvement, and elevated inflammatory markers. These symptoms and the associated laboratory values strongly resemble toxic shock syndrome, an escalation of the cytotoxic adaptive immune response triggered upon the binding of pathogenic superantigens to MHCII molecules and T cell receptors (TCRs). Here, we used structure-based computational models to demonstrate that the SARS-CoV-2 spike (S) exhibits a high-affinity motif for binding TCR, interacting closely with both the - and {beta}-chains variable domains complementarity-determining regions. The binding epitope on S harbors a sequence motif unique to SARS-CoV-2 (not present in any other SARS coronavirus), which is highly similar in both sequence and structure to bacterial superantigens. Further examination revealed that this interaction between the virus and human T cells is strengthened in the context of a recently reported rare mutation (D839Y/N/E) from a European strain of SARS-CoV-2. Furthermore, the interfacial region includes selected residues from a motif shared between the SARS viruses from the 2003 and 2019 pandemics, which has intracellular adhesion molecule (ICAM)-like character. These data suggest that the SARS-CoV-2 S may act as a superantigen to drive the development of MIS-C as well as cytokine storm in adult COVID-19 patients, with important implications for the development of therapeutic approaches. SignificanceAlthough children have been largely spared from severe COVID-19 disease, a rare hyperinflammatory syndrome has been described in Europe and the East Coast of the United States, termed Multisystem Inflammatory Syndrome in Children (MISC). The symptoms and diagnostic lab values of MIS-C resemble those of toxic shock, typically caused by pathogenic superantigens stimulating excessive activation of the adaptive immune system. We show that SARS-CoV-2 spike has a sequence and structure motif highly similar to those of bacterial superantigens, and may directly bind to the T cell receptors. This sequence motif, not present in other coronaviruses, may explain the unique potential for SARS-CoV-2 to cause both MIS-C and the cytokine storm observed in adult COVID-19 patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...