Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Recent Pat Drug Deliv Formul ; 12(1): 65-74, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29345599

RESUMO

AIMS AND BACKGROUND: The design and development of an effective medicine are, however, often faced with a number of challenges. One of them is the close relationship of drug's bioavailability with solubility, dissolution rate and permeability. The use of curcumin's (CUR) therapeutic potential is limited by its poor water solubility and low chemical stability. The purpose was to evaluate the effect of polymer and solid dispersion (SD) preparation techniques to enhance the aqueous solubility, dissolution rate and stability of the CUR. The recent patents on curcumin SD were reported as (i) curcumin with polyvinylpyrrolidone (CN20071 32500 20071214, WO2006022012 and CN20151414227 20150715), (ii) curcumin-zinc/polyvinylpyrrolidone (CN20151414227 20150715), (iii) curcumin-poloxamer 188 (CN2008171177 20080605), (iv) curcumin SD prepared by melting method (CN20161626746-20160801). MATERIALS AND METHODS: SD obtained by co-preciptation or microwave fusion and the physical mixture of CUR with Poloxamer-407 (P-407), Hydroxypropylmetylcellulose-K4M (HPMC K4M) and Polyvinylpyrrolidone-K30 (PVP-K30) were prepared at the ratios of 1:2; 1:1 and 2:1. The samples were evaluated by solubility, stability, dissolution rate and characterized by SEM, PXRD, DSC and FTIR. RESULTS: The solubility, stability (pH 7.0) and dissolution rate were significantly greater for SD (CUR:P-407 1:2). The PXRD,SEM and DSC indicated a change in the crystalline state of CUR. The enhancement of solubility was dependent on a combination of factors including the weight ratio, preparation techniques and carrier properties. The drug release data fitted well with the Weibull equation, indicating that the drug release was controlled by diffusion, polymer relaxation and erosion occurring simultaneously. CONCLUSION: Thus, these SDs, specifically CUR:P-407 1:2 w/w, can overcome the barriers of poor bioavailability to reap many beneficial properties.


Assuntos
Curcumina/administração & dosagem , Curcumina/química , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Compostos de Epóxi/química , Óxido de Etileno/química , Patentes como Assunto , Polímeros/química , Cristalização , Estabilidade de Medicamentos , Derivados da Hipromelose/química , Poloxâmero/química , Povidona/química , Solubilidade
2.
J Biomed Mater Res B Appl Biomater ; 104(7): 1483-94, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26148945

RESUMO

Tissue engineering plays a significant role both in the re-establishment of functions and regeneration of organic tissues. Success in manufacturing projects for biological scaffolds, for the purpose of tissue regeneration, is conditioned by the selection of parameters such as the biomaterial, the device architecture, and the specificities of the cells making up the organic tissue to create, in vivo, a microenvironment that preserves and further enhances the proliferation of a specific cell phenotype. To support this approach, we have screened scientific publications that show biomedical applications of scaffolds, biomechanical, morphological, biochemical, and hemodynamic characteristics of the target organic tissues, and the possible interactions between different cell matrices and biological scaffolds. This review article provides an overview on the biomedical application of scaffolds and on the characteristics of the (bio)materials commonly used for manufacturing these biological devices used in tissue engineering, taking into consideration the cellular specificity of the target tissue. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1483-1494, 2016.


Assuntos
Proliferação de Células , Matriz Extracelular/química , Regeneração , Alicerces Teciduais , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...