Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897812

RESUMO

The high mortality rate caused by atherosclerosis makes it necessary to constantly search for new and better treatments. In previous reports, chemically modified carbon-coated iron nanoparticles (Fe@C NPs) have been demonstrated a high biocompatibility and promising anti-plaque properties. To further investigate these effects, the interaction of these nanoparticles with the adipose tissue of Wistar rats (in vivo) and human atherosclerotic plaques (ex vivo) was studied. For the in vivo study, cobalt-chromium (CoCr) alloy tubes, which are used for coronary stent manufacturing, were prepared with a coating of polylactic acid (PLA) which contained either modified or non-modified Fe@C NPs in a 5% by weight concentration. The tubes were implanted into an area of subcutaneous fat in Wistar rats, where changes in the histological structure and functional properties of the surrounding tissue were observed in the case of coatings modified with Fe@C NPs. For the ex vivo study, freshly explanted human atherosclerotic plaques were treated in the physiological solution with doses of modified Fe@C NPs, with mass equal to 5% or 25% relative to the plaques. This treatment resulted in the release of cholesterol-like compounds from the surface of the plaques into the solution, thus proving a pronounced destructive effect on the plaque structure. Chemically modified Fe@C NPs, when used as an anti-atherosclerosis agent, were able to activate the activity of macrophages, which could lead to the destruction of atherosclerotic plaques structures. These findings could prove the fabrication of next-generation vascular stents with built-in anti-atherosclerotic agents.


Assuntos
Aterosclerose , Nanopartículas , Placa Aterosclerótica , Tecido Adiposo/patologia , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Carbono/farmacologia , Carbono/uso terapêutico , Humanos , Ferro/uso terapêutico , Nanopartículas/química , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia , Ratos , Ratos Wistar
2.
Immunobiology ; 223(4-5): 413-421, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29179985

RESUMO

Myocardial infarction (MI) remains the leading cause of mortality and morbidity throughout the world. Macrophages are key innate immune cells that play a significant role in transition from the inflammatory to the regenerative phase during wound healing following MI. The scavenger receptor stabilin-1 is one of the most interesting macrophage biomarkers. This receptor contributes to wound healing, angiogenesis, and tissue remodeling. We suggested a research protocol using macrophage biomarkers to study the cellular basis of cardiac remodeling and healing in patients with acute MI. The purpose of the research was to translate experimental knowledge regarding macrophage subsets and their biomarkers in post-infarction myocardial regeneration into results observed in clinical settings. The study included 41 patients with fatal MI type 1. All patients were divided into four groups according to the timeline of MI histopathology. In addition to routine histopathological analysis, macrophage infiltration was assessed by immunohistochemistry. We used CD68 as a marker for the cells of the macrophage lineage and stabilin-1 as an M2-like macrophage biomarker. The number of CD68+ and stabilin-1+ macrophages in the infarct area increased and peaked in the regenerative phase and did not decrease in the late stage of MI. In the peri-infarct area, the number of CD68+ macrophages increased in the inflammatory phase, peaked during the reparative phase, and did not decrease in the late phase, while the number of stabilin-1+ macrophages increased in the regenerative phase and remained unchanged. Additionally, in the reparative phase, we observed increase in the number of CD68+ and stabilin-1+ macrophages in the non-infarct area. The research protocol suggested allowed us to translate experimental knowledge regarding macrophage subsets and their biomarkers in post-infarction myocardial regeneration into clinical data. Taken together, these results demonstrated biphasic cardiac macrophage response following acute MI somewhat similar to that in a murine model. The increase in stabilin-1+ macrophage infiltration noticed in the myocardium during the regenerative phase and the strong positive correlation between the number of these cells and timeline of MI histopathology enabled us to propose stabilin-1 as a diagnostic macrophage biomarker in myocardium wound healing in patients with acute MI.


Assuntos
Macrófagos/imunologia , Infarto do Miocárdio/imunologia , Miocárdio/imunologia , Doença Aguda , Idoso , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Biomarcadores/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Receptores de Retorno de Linfócitos/metabolismo , Cicatrização
3.
J Biomed Sci ; 24(1): 13, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28173864

RESUMO

Adverse cardiac remodeling leads to impaired ventricular function and heart failure, remaining a major cause of mortality and morbidity in patients with acute myocardial infarction. It have been shown that, even if all the recommended therapies for ST-segment elevation myocardial infarction are performed, one third of patients undergoes progressive cardiac remodeling that represents morphological basis for following heart failure. The need to extend our knowledge about factors leading to different clinical scenarios of myocardial infarction and following complications has resulted in a research of immuno-inflammatory pathways and molecular activities as the basis for post-infarction remodeling. Recently, macrophages (cells of the innate immune system) have become a subject of scientific interest under both normal and pathological conditions. Macrophages, besides their role in host protection and tissue homeostasis, play an important role in pathophysiological processes induced by myocardial infarction. In this article we summarize data about the function of monocytes and macrophages plasticity in myocardial infarction and outline potential role of these cells as effective targets to control processes of inflammation, cardiac remodeling and healing following acute coronary event.


Assuntos
Síndrome Coronariana Aguda/imunologia , Insuficiência Cardíaca/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Infarto do Miocárdio/imunologia , Síndrome Coronariana Aguda/patologia , Animais , Insuficiência Cardíaca/patologia , Humanos , Macrófagos/patologia , Infarto do Miocárdio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...