Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34883995

RESUMO

The global population is aging in an unprecedented manner and the challenges for improving the lives of older adults are currently both a strong priority in the political and healthcare arena. In this sense, preventive measures and telemedicine have the potential to play an important role in improving the number of healthy years older adults may experience and virtual coaching is a promising research area to support this process. This paper presents COLAEVA, an interactive web application for older adult population clustering and evolution analysis. Its objective is to support caregivers in the design, validation and refinement of coaching plans adapted to specific population groups. COLAEVA enables coaching caregivers to interactively group similar older adults based on preliminary assessment data, using AI features, and to evaluate the influence of coaching plans once the final assessment is carried out for a baseline comparison. To evaluate COLAEVA, a usability test was carried out with 9 test participants obtaining an average SUS score of 71.1. Moreover, COLAEVA is available online to use and explore.


Assuntos
Tutoria , Telemedicina , Idoso , Mineração de Dados , Humanos , Internet , Grupos Populacionais
2.
Comput Methods Programs Biomed ; 211: 106368, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34537490

RESUMO

BACKGROUND AND OBJECTIVE: Breast density refers to the proportion of glandular and fatty tissue in the breast and is recognized as a useful factor assessing breast cancer risk. Moreover, the segmentation of the high-density glandular tissue from mammograms can assist medical professionals visualizing and localizing areas that may require additional attention. Developing robust methods to segment breast tissues is challenging due to the variations in mammographic acquisition systems and protocols. Deep learning methods are effective in medical image segmentation but they often require large quantities of labelled data. Unsupervised domain adaptation is an area of research that employs unlabelled data to improve model performance on variations of samples derived from different sources. METHODS: First, a U-Net architecture was used to perform segmentation of the fatty and glandular tissues with labelled data from a single acquisition device. Then, adversarial-based unsupervised domain adaptation methods were used to incorporate single unlabelled target domains, consisting of images from a different machine, into the training. Finally, the domain adaptation model was extended to include multiple unlabelled target domains by combining a reconstruction task with adversarial training. RESULTS: The adversarial training was found to improve the generalization of the initial model on new domain data, demonstrating clearly improved segmentation of the breast tissues. For training with multiple unlabelled domains, combining a reconstruction task with adversarial training improved the stability of the training and yielded adequate segmentation results across all domains with a single model. CONCLUSIONS: Results demonstrated the potential for adversarial-based domain adaptation with U-Net architectures for segmentation of breast tissue in mammograms coming from several devices and demonstrated that domain-adapted models could achieve a similar agreement with manual segmentations. It has also been found that combining adversarial and reconstruction-based methods can provide a simple and effective solution for training with multiple unlabelled target domains.


Assuntos
Processamento de Imagem Assistida por Computador , Mamografia , Tecido Adiposo , Mama/diagnóstico por imagem , Densidade da Mama
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...