Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 411(6834): 163-6, 2001 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-11346786

RESUMO

Current models of the evolution of the known extrasolar planetary systems need to incorporate orbital migration and/or gravitational interactions among giant planets to explain the presence of large bodies close to their parent stars. These processes could also lead to planets being ingested by their parent stars, which would alter the relative abundances of elements heavier than helium in the stellar atmospheres. In particular, the abundance of the rare 6Li isotope, which is normally destroyed in the early evolution of solar-type stars but preserved intact in the atmospheres of giant planets, would be boosted substantially. 6Li has not hitherto been observed reliably in a metal-rich star, where metallicity refers to the total abundance of elements heavier than helium. Here we report the discovery of 6Li in the atmosphere of the metal-rich solar-type star HD82943, which is known to have an orbiting giant planet. The presence of 6Li can probably be interpreted as evidence for a planet (or planets) having been engulfed by the parent star.

2.
Science ; 290(5489): 103-7, 2000 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-11021788

RESUMO

We present the discovery by optical and near-infrared imaging of an extremely red, low-luminosity population of isolated objects in the young, nearby stellar cluster around the multiple, massive star final sigma Orionis. The proximity (352 parsecs), youth (1 million to 5 million years), and low internal extinction make this cluster an ideal site to explore the substellar domain from the hydrogen mass limit down to a few Jupiter masses. Optical and near-infrared low-resolution spectroscopy of three of these objects confirms the very cool spectral energy distribution (atmospheric effective temperatures of 1700 to 2200 kelvin) expected for cluster members with masses in the range 5 to 15 times that of Jupiter. Like the planets of the solar system, these objects are unable to sustain stable nuclear burning in their interiors, but in contrast they are not bound to stars. This new kind of isolated giant planet, which apparently forms on time scales of less than a few million years, offers a challenge to our understanding of the formation processes of planetary mass objects.

3.
Astrophys J ; 527(1): L9-L12, 1999 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-10566987

RESUMO

The recent discovery of dust-correlated diffuse microwave emission has prompted two rival explanations: free-free emission and spinning dust grains. We present new detections of this component at 10 and 15 GHz by the switched-beam Tenerife experiment. The data show a turnover in the spectrum and thereby support the spinning dust hypothesis. We also present a significant detection of synchrotron radiation at 10 GHz, which is useful for normalizing foreground contamination of cosmic microwave background experiments at high galactic latitudes.

4.
Science ; 282(5392): 1309-12, 1998 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-9812893

RESUMO

A substellar-mass object in orbit at about 300 astronomical units from the young low-mass star G 196-3 was detected by direct imaging. Optical and infrared photometry and low- and intermediate-resolution spectroscopy of the faint companion, hereafter referred to as G 196-3B, confirm its cool atmosphere and allow its mass to be estimated at 25-10+15 Jupiter masses. The separation between the objects and their mass ratio suggest the fragmentation of a collapsing cloud as the most likely origin for G 196-3B, but alternatively it could have originated from a protoplanetary disc that has been dissipated. Whatever the formation process was, the young age of the primary star (about 100 million years) demonstrates that substellar companions can form on short time scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA