Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37048467

RESUMO

Endometrosis negatively affects endometrial function and fertility in mares, due to excessive deposition of type I (COL1) and type III (COL3) collagens. The pro-fibrotic transforming growth factor (TGF-ß1) induces myofibroblast differentiation, characterized by α-smooth muscle actin (α-SMA) expression, and collagen synthesis. In humans, fibrosis has been linked to epigenetic mechanisms. To the best of our knowledge, this has not been described in mare endometrium. Therefore, this study aimed to investigate the in vitro epigenetic regulation in TGF-ß1-treated mare endometrial fibroblasts and the use of 5-aza-2'-deoxycytidine (5-aza-dC), an epigenetic modifier, as a putative treatment option for endometrial fibrosis. Methods and Results: The in vitro effects of TGF-ß1 and of 5-aza-dC on DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B), COL1A1, COL3A1, and α-SMA transcripts were analyzed in endometrial fibroblasts, and COL1 and COL3 secretion in a co-culture medium. TGF-ß1 upregulated DNMT3A transcripts and collagen secretion. In TGF-ß1-treated endometrial fibroblasts, DNA methylation inhibitor 5-aza-dC decreased collagen transcripts and secretion, but not α-SMA transcripts. Conclusion: These findings suggest a possible role of epigenetic mechanisms during equine endometrial fibrogenesis. The in vitro effect of 5-aza-dC on collagen reduction in TGF-ß1-treated fibroblasts highlights this epigenetic involvement. This may pave the way to different therapeutic approaches for endometrosis.

2.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36835008

RESUMO

Myeloperoxidase is an enzyme released by neutrophils when neutrophil extracellular traps (NETs) are formed. Besides myeloperoxidase activity against pathogens, it was also linked to many diseases, including inflammatory and fibrotic ones. Endometrosis is a fibrotic disease of the mare endometrium, with a large impact on their fertility, where myeloperoxidase was shown to induce fibrosis. Noscapine is an alkaloid with a low toxicity, that has been studied as an anti-cancer drug, and more recently as an anti-fibrotic molecule. This work aims to evaluate noscapine inhibition of collagen type 1 (COL1) induced by myeloperoxidase in equine endometrial explants from follicular and mid-luteal phases, at 24 and 48 h of treatment. The transcription of collagen type 1 alpha 2 chain (COL1A2), and COL1 protein relative abundance were evaluated by qPCR and Western blot, respectively. The treatment with myeloperoxidase increased COL1A2 mRNA transcription and COL1 protein, whereas noscapine was able to reduce this effect with respect to COL1A2 mRNA transcription, in a time/estrous cycle phase-dependent manner (in explants from the follicular phase, at 24 h of treatment). Our study indicates that noscapine is a promising drug to be considered as an anti-fibrotic molecule to prevent endometrosis development, making noscapine a strong candidate to be applied in future endometrosis therapies.


Assuntos
Fibrose , Noscapina , Peroxidase , Animais , Feminino , Colágeno/metabolismo , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Fibrose/veterinária , Cavalos/metabolismo , Noscapina/farmacologia , Noscapina/uso terapêutico , Peroxidase/antagonistas & inibidores , Peroxidase/metabolismo , RNA Mensageiro/metabolismo
3.
Front Vet Sci ; 9: 970003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032279

RESUMO

Endometrium type I (COL1) and III (COL3) collagen accumulation, periglandular fibrosis and mare infertility characterize endometrosis. Metalloproteinase-2 (MMP-2), MMP-9 and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) are involved in collagen turnover. Since epigenetic changes may control fibroproliferative diseases, we hypothesized that epigenetic mechanisms could modulate equine endometrosis. Epigenetic changes can be reversed and therefore extremely promising for therapeutic use. Methylation pattern analysis of a particular gene zone is used to detect epigenetic changes. DNA methylation commonly mediates gene repression. Thus, this study aimed to evaluate if the transcription of some genes involved in equine endometrosis was altered with endometrial fibrosis, and if the observed changes were epigenetically modulated, through DNA methylation analysis. Endometrial biopsies collected from cyclic mares were histologically classified (Kenney and Doig category I, n = 6; category IIA, n = 6; category IIB, n = 6 and category III, n = 6). Transcription of COL1A1, COL1A2, COL3A1, MMP2, MMP9, TIMP1, and TIMP2 genes and DNA methylation pattern by pyrosequencing of COL1A1, MMP2, MMP9, TIMP1 genes were evaluated. Both MMP2 and MMP9 transcripts decreased with fibrosis, when compared with healthy endometrium (category I) (P < 0.05). TIMP1 transcripts were higher in category III, when compared to category I endometrium (P < 0.05). No differences were found for COL1A1, COL1A2, COL3A1 and TIMP2 transcripts between endometrial categories. There were higher methylation levels of (i) COL1A1 in category IIB (P < 0.05) and III (P < 0.01), when compared to category I; (ii) MMP2 in category III, when compared to category I (P < 0.001) and IIA (P < 0.05); and (iii) MMP9 in category III, when compared to category I and IIA (P < 0.05). No differences in TIMP1 methylation levels were observed between endometrial categories. The hypermethylation of MMP2 and MMP9, but not of COL1A1 genes, occurred simultaneously with a decrease in their mRNA levels, with endometrial fibrosis, suggesting that this hypermethylation is responsible for repressing their transcription. Our results show that endometrosis is epigenetically modulated by anti-fibrotic genes (MMP2 and MMP9) inhibition, rather than fibrotic genes activation and therefore, might be promising targets for therapeutic use.

4.
Animals (Basel) ; 12(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883401

RESUMO

Collagen pathological deposition in equine endometrium (endometrosis) is responsible for infertility. Kenney and Doig's endometrial biopsy histopathological classification is the gold standard method for endometrosis evaluation, whereby blood biomarkers identification would be less invasive and could provide additional information regarding endometrosis diagnosis and fertility prognosis. This study aimed to identify blood biomarkers for endometrosis diagnosis (42 mares were used in experiment 1), and fertility assessment (50 mares were used in experiment 2). Reproductive examination, endometrial biopsy histopathological classification (Kenney and Doig) and blood collection were performed. Endometrium and serum collagen type I (COL1) and type III (COL3), and hydroxyproline concentrations were measured (ELISA). Serum COL3 cut-off value of 60.9 ng/mL allowed healthy endometria (category I) differentiation from endometria with degenerative/fibrotic lesions (categories IIA, IIB or III) with 100% specificity and 75.9% sensitivity. This cut-off value enabled category I + IIA differentiation from IIB + III (76% specificity, 81% sensitivity), and category III differentiation from others (65% specificity, 92.3% sensitivity). COL1 and hydroxyproline were not valid as blood biomarkers. Serum COL3 cut-off value of 146 ng/mL differentiated fertile from infertile mares (82.4% specificity, 55.6% sensitivity), and was not correlated with mares' age. Only COL3 may prove useful as a diagnostic aid in mares with endometrial fibrosis and as a fertility indicator.

5.
Life (Basel) ; 11(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34685478

RESUMO

Cathepsin G (CAT) is a protease released by neutrophils when forming neutrophil extracellular traps that was already associated with inducing type I collagen (COL1) in equine endometrium in vitro. Endometrosis is a fibrotic condition mainly characterized by COL1 deposition in the equine endometrium. The objective was to evaluate if noscapine (an alkaloid for cough treatment with anti-neoplastic and anti-fibrotic properties) would reduce COL1A2 transcription (evaluated by qPCR) and COL1 protein relative abundance (evaluated by western blot) induced by CAT in equine endometrial explants from follicular and mid-luteal phases treated for 24 or 48 h. The explants treated with CAT increased COL1 expression. Noscapine decreased COL1A2 transcription at both estrous cycle phases, but COL1 relative protein only at the follicular phase, both induced by CAT. Additionally, the noscapine anti-fibrotic action was found to be more effective in the follicular phase. The CAT treatment caused more fibrosis at the longest period of treatment, while noscapine acted better at the shortest time of treatment. Our results showed that noscapine could act as an anti-fibrotic drug in equine endometrosis by inhibiting CAT in vitro. Noscapine offers a new promising therapeutic tool for treating fibrosis as a single non-selective agent to be considered in the future.

6.
Animals (Basel) ; 11(9)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34573581

RESUMO

Endometrosis, a fibrotic disease of mare endometrium, impairs uterine function. Prostaglandins (PG), despite modulating reproductive physiological functions, may also cause local pathological collagen deposition (fibrogenesis). We have previously shown that neutrophil extracellular traps (NETs) may also favor mare endometrosis. The aim of this study was to investigate the effect of enzymes present in NETs on PGF2α-pathway activation. Kenney and Doig's type I/IIA and IIB/III mare endometria, from follicular phase (FLP) and mid-luteal (MLP) phase, were cultured in vitro in the presence of NETs enzymes (elastase, cathepsin-G or myeloperoxidase). Production of PGF2α (EIA) and transcription (qPCR) of its synthases (PTGS2, AKR1C3) and receptor (PTGFR) genes were evaluated. PGF2α and PTGFR were influenced by endometrial category and estrous cycle phase. In FLP endometrium, NETs enzymes induced both high PGF2α production and/or PTGFR transcription. In MLP type I/IIA tissues, down-regulation of PTGFR transcripts occurred. However, in MLP type IIB/III endometrium, high levels of PTGFR transcripts were induced by NETs enzymes. As PGF2α-pathway activation facilitates fibrogenesis in other tissues, PGF2α may be involved in endometrosis pathogenesis. In the mare, the endocrine microenvironment of healthy and pathological endometrium might modulate the PGF2α pathway, as well as fibrosis outcome on endometrium challenged by NETs enzymes.

7.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069423

RESUMO

Endometrosis is a reproductive pathology that is responsible for mare infertility. Our recent studies have focused on the involvement of neutrophil extracellular traps enzymes, such as elastase (ELA), in the development of equine endometrosis. Noscapine (NOSC) is an alkaloid derived from poppy opium with anticough, antistroke, anticancer, and antifibrotic properties. The present work investigates the putative inhibitory in vitro effect of NOSC on collagen type I alpha 2 chain (COL1A2) mRNA and COL1 protein relative abundance induced by ELA in endometrial explants of mares in the follicular or mid-luteal phases at 24 or 48 h of treatment. The COL1A2 mRNA was evaluated by qPCR and COL1 protein relative abundance by Western blot. In equine endometrial explants, ELA increased COL 1 expression, while NOSC inhibited it at both estrous cycle phases and treatment times. These findings contribute to the future development of new endometrosis treatment approaches. Noscapine could be a drug capable of preventing collagen synthesis in mare's endometrium and facilitate the therapeutic approach.


Assuntos
Colágeno Tipo I/metabolismo , Endometriose/metabolismo , Noscapina/farmacologia , Animais , Colágeno/metabolismo , Colágeno Tipo I/efeitos dos fármacos , Colágeno Tipo I/genética , Endometriose/tratamento farmacológico , Endometriose/veterinária , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Ciclo Estral , Armadilhas Extracelulares/metabolismo , Feminino , Fibrose , Doenças dos Cavalos/patologia , Cavalos , Noscapina/metabolismo , Elastase Pancreática/metabolismo , Inibidores de Proteases/farmacologia
8.
Animals (Basel) ; 11(4)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921416

RESUMO

The oviduct presents the ideal conditions for fertilization and early embryonic development. In this study, (i) vascularization pattern; (ii) microvascular density; (iii) transcripts of angiogenic factors (FGF1, FGF2, VEGF) and their receptors-FGFR1, FGFR2, KDR, respectively, and (iv) the relative protein abundance of those receptors were assessed in cyclic mares' oviducts. The oviductal artery, arterioles and their ramifications, viewed by means of vascular injection-corrosion, differed in the infundibulum, ampulla and isthmus. The isthmus, immunostained with CD31, presented the largest vascular area and the highest number of vascular structures in the follicular phase. Transcripts (qPCR) and relative protein abundance (Western blot) of angiogenic factors fibroblast growth factor 1 (FGF1) and 2 (FGF2) and vascular endothelial growth factor (VEGF), and their respective receptors (FGFR1, FGFR2, VEGFR2 = KDR), were present in all oviduct portions throughout the estrous cycle. Upregulation of the transcripts of angiogenic receptors FGF1 and FGFR1 in the ampulla and isthmus and of FGF2 and KDR in the isthmus were noted. Furthermore, in the isthmus, the relative protein abundance of FGFR1 and KDR was the highest. This study shows that the equine oviduct presents differences in microvascular density in its three portions. The angiogenic factors VEGF, FGF1, FGF2 and their respective receptors are expressed in all studied regions of the mare oviduct, in agreement with microvascular patterns.

9.
Animals (Basel) ; 11(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467081

RESUMO

Neutrophils can originate neutrophil extracellular traps (NETs). Myeloperoxidase (MPO) is a peroxidase found in NETs associated to equine endometrosis and can be inhibited by 4-aminobenzoic acid hydrazide (ABAH). Metallopeptidases (MMPs) participate in extracellular matrix stability and fibrosis development. The objectives of this in vitro work were to investigate, in explants of mare's endometrium, (i) the ABAH capacity to inhibit MPO-induced collagen type I (COL1) expression; and (ii) the action of MPO and ABAH on the expression and gelatinolytic activity of MMP-2/-9. Explants retrieved from the endometrium of mares in follicular or mid-luteal phases were treated with MPO, ABAH, or their combination, for 24 or 48 h. The qPCR analysis measured the transcription of COL1A2, MMP2, and MMP9. Western blot and zymography were performed to evaluate COL1 protein relative abundance and gelatinolytic activity of MMP-2/-9, respectively. Myeloperoxidase elevated COL1 relative protein abundance at both treatment times in follicular phase (p < 0.05). The capacity of ABAH to inhibit MPO-induced COL1 was detected in follicular phase at 48 h (p < 0.05). The gelatinolytic activity of activated MMP-2 augmented in mid-luteal phase at 24 h after MPO treatment, but it was reduced with MPO+ABAH treatment. The activity of MMP-9 active form augmented in MPO-treated explants. However, this effect was inhibited by ABAH in the follicular phase at 48 h (p < 0.05). By inhibiting the pro-fibrotic effects of MPO, it might be possible to reduce the development of endometrosis. Metallopeptidase-2 might be involved in an acute response to MPO in the mid-luteal phase, while MMP-9 might be implicated in a prolonged exposition to MPO in the follicular phase.

10.
Front Vet Sci ; 8: 772658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35059454

RESUMO

In older mares, increasing collagen fibers (fibrosis) in the endometrium and oviduct predisposes to sub-fertility and infertility. In this study, (i) gene transcription of collagen (qPCR: COL1A1, COL1A2, COL3A1, COL5A1); (ii) total collagen protein (hydroxyproline); (iii) collagen distribution (Picrosirius red staining; polarized light microscopy); and (iv) microvascular density (Periodic acid-Schiff staining), were evaluated in mares' placenta, and related to mares age, and placenta and neonate weights. Samples were collected from the gravid horn, non-gravid horn, and body of the placenta from younger (n = 7), and older mares (n = 9) of different breeds. Transcripts of COL1A1, COL3A1 and COL5A1, total collagen protein, chorionic plate connective tissue thickness, and microvascularization increased in the gravid horn of older mares' placentas, compared to the youngest (P < 0.05). Although in other species placenta fibrosis may indicate placental insufficiency and reduced neonate weight, this was not observed here. It appears that older fertile mares, with more parities, may develop a heavier, more vascularized functional placenta with more collagen, throughout a longer gestation, which enables the delivery of heavier foals. Thus, these features might represent morphological and physiological adaptations of older fertile mares' placentas to provide the appropriate nutrition to the equine fetus.

11.
Front Vet Sci ; 7: 631, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134338

RESUMO

Collagen fibers and inflammatory cells are the basis for jenny endometrium Kenney and Doig's classification developed for the mare. The infiltration of a large number of eosinophils in the jenny endometrium is intriguing. Eosinophil and fibroblast produced IL33, which has been related to fibrosis development and chronicity. This work on the endometrium consisted of (i) quantification of collagen type I (COL1A2), type III (COL3A1), and IL33 transcripts; (ii) histological localization and quantification of COL1 and COL3 proteins; and (iii) eosinophil and neutrophil count and correlation with collagen area and IL33 transcripts. Localization of COL protein in the jenny endometrium was also compared to the mare endometrium. As fibrosis increased, eosinophil and neutrophil count decreased (P < 0.05). A 5-fold increase in IL33 transcripts was noted from categories IIA to III. There was a tendency toward a positive correlation between eosinophil count and IL33 transcripts in category IIA endometrium (P = 0.055). Neither transcripts of COL1A2 nor COL3A1 nor the areas of COL1 or COL3 differed with endometrial categories. Unlike for the mare, and regardless of the jenny endometrium classification, COL3 was always found to different extents in the stratum compactum, while COL1 was mainly present in deep stroma. As fibrosis progressed in the mare, an extensive increase in COL1 fibers was notorious under the surface epithelium. Correlations between neutrophil count and COL1 and COL3 areas were observed in the jenny endometrium, although no correlation was found for eosinophil count. Neutrophil count positive correlation with the COL1 area and negative correlation with the COL3 area in endometria with mild lesions suggest that neutrophils in the jenny endometrium may be involved in fibrogenesis. In addition, when eosinophilia subsides, the endometrium reacts with fibrosis establishment, which could be stimulated by the pro-fibrotic cytokine IL33, whose release might then be ascribed to fibroblasts. Further studies are needed to analyze the effect of the presence of COL3 next to the surface epithelium in the stratum compactum, or around the endometrial glands on jenny's endometrial function and fertility.

12.
Front Vet Sci ; 7: 582211, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195599

RESUMO

Although proteases found in neutrophil extracellular traps (NETs) have antimicrobial properties, they also stimulate collagen type 1 (COL1) production by the mare endometrium, contributing for the development of endometrosis. Cathepsin G (CAT), a protease present in NETs, is inhibited by specific inhibitors, such as cathepsin G inhibitor I (INH; ß-keto-phosphonic acid). Matrix metallopeptidases (MMPs) are proteases involved in the equilibrium of the extracellular matrix. The objective of this study was to investigate the effect of CAT and INH (a selective CAT inhibitor) on the expression of MMP-2 and MMP-9 and on gelatinolytic activity. In addition, the putative inhibitory effect of INH on CAT-induced COL1 production in mare endometrium was assessed. Endometrial explants retrieved from mares in follicular phase or midluteal phase were treated for 24 or 48 h with CAT, inhibitor alone, or both treatments. In explants, transcripts (quantitative polymerase chain reaction) of COL1A2, MMP2, and MMP9, as well as the relative abundance of COL1 protein (Western blot), and activity of MMP-2 and MMP-9 (zymography) were evaluated. The protease CAT induced COL1 expression in explants, at both estrous cycle phases and treatment times. The inhibitory effect of INH was observed on COL1A2 transcripts in follicular phase at 24-h treatment, and in midluteal phase at 48 h (P < 0.05), and on the relative abundance of COL protein in follicular phase and midluteal phase explants, at 48 h (P < 0.001). Our study suggests that MMP-2 might also be involved in an earlier response to CAT, and MMP-9 in a later response, mainly in the follicular phase. While the use of INH reduced CAT-induced COL1 endometrial expression, MMPs might be involved in the fibrogenic response to CAT. Therefore, in mare endometrium, the use of INH may be a future potential therapeutic means to reduce CAT-induced COL1 formation and to hamper endometrosis establishment.

13.
Animals (Basel) ; 10(5)2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429399

RESUMO

Neutrophil extracellular traps (NETs) fight endometritis, and elastase (ELA), a protease found in NETs, might induce collagen type I (COL1) accumulation in equine endometrium. Metallopeptidases (MMPs) are involved in extracellular matrix balance. The aim was to evaluate the effects of ELA and sivelestat (selective elastase inhibitor) on MMP-2 and MMP-9 expression and gelatinolytic activity, as well as the potential inhibitory effect of sivelestat on ELA-induced COL1 in equine endometrium. Endometrial explants from follicular (FP) and mid-luteal (MLP) phases were treated for 24 or 48 h with ELA, sivelestat, and their combination. Transcripts of COL1A2, MMP2, and MMP9 were evaluated by qPCR; COL1 protein relative abundance by Western blot, and MMP-2 and MMP-9 gelatinolytic activity by zymography. In response to ELA treatment, there was an increase in MMP2 mRNA transcription (24 h) in active MMP-2 (48 h), both in FP, and in MMP9 transcripts in FP (48 h) and MLP (24 h) (p < 0.05). Sivelestat inhibited ELA-induced COL1A2 transcripts in FP (24 h) and MLP (24 h, 48 h) (p < 0.05). The sivelestat inhibitory effect was detected in MMP9 transcripts in FP at 48 h (p < 0.05), but proteases activity was unchanged. Thus, MMP-2 and MMP-9 might be implicated in endometrium fibrotic response to ELA. In mare endometrium, sivelestat may decrease ELA-induced COL1 deposition and hinder endometrosis development.

14.
Theriogenology ; 153: 74-84, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32442743

RESUMO

An increasing number of studies have shown that prostaglandins (PGs) exert multiple regulatory actions in the processes associated to tissue remodeling and fibrosis. Extracellular matrix (ECM) turnover is mediated by matrix metallopeptidases (MMPs). The knowledge about the regulation of their expression in mare endometrium is still limited. Thus, the aim of this study was to investigate whether: (i) profibrotic transforming growth factor (TGF)-ß1 modulates PG production in equine endometrium; and (ii) PGE2 and PGF2α modulate MMPs, their tissue inhibitors (TIMPs), and collagen 1 (COL1) expression. In experiment 1, the effect of TGF-ß1 (5 ng/mL) on PG secretion and PG synthases mRNA transcription, after 24 and 48 h treatment of mare endometrial fibroblast and epithelial cells was investigated using ELISA and qPCR. In experiment 2, the effects of PGE2 and PGF2α in doses 10-7M and 10-8M on secretion and MMP1, 2, 9, 13, TIMP1, 2, and COL1A1 mRNA transcription in mare endometrial fibroblasts were assessed. Transforming growth factor-ß1 treatment decreased secretion of PGF2α by endometrial fibroblasts (P < 0.05) and PGF2α and PGE2 by endometrial epithelial cells (P < 0.05). Prostaglandin E2 increased MMP-2 and MMP-9, and decreased MMP-13 secretion by endometrial fibroblasts (P < 0.05). Additionally, PGF2α treatment increased MMP-2, MMP-13 and COL1, but decreased MMP-1 secretion by endometrial fibroblasts (P < 0.05). Prostaglandins may be involved in the processes associated to pathological endometrial remodeling by their effect on MMP expression. The effect of PGF2α on COL1 secretion from fibroblasts suggests its profibrotic role in pathological endometrial remodeling.


Assuntos
Colágeno/metabolismo , Endométrio/citologia , Fibroblastos/efeitos dos fármacos , Cavalos , Metaloendopeptidases/metabolismo , Prostaglandinas/farmacologia , Animais , Colágeno/genética , Dinoprostona/farmacologia , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Metaloendopeptidases/genética , Metaloproteases/genética , Metaloproteases/metabolismo , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
15.
Theriogenology ; 150: 150-157, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31973963

RESUMO

The innate and adaptive immune mechanisms are key components of regulation of reproductive physiological function and uterine disorders in equine uterus. The predominant immunological response in equine endometrium, characterized by an innate immune response, occurs under estrogens influence, in the follicular phase. Although, the increase in immune-related genes in equine endometrium during estrus has been suggested to play a role in uterine clearance after mating, immune cells and their product, i.e. cytokines play also mandatory role in the luteal development and maintenance, regression of equine corpus luteum, as well as in early pregnancy. Innate immune response is nonspecific and acts as the first line of defense against pathogens, foreign stimuli that include constituents of seminal fluid and local infections (endometritis). It has been recently established that a phagocytosis-independent mechanism to restrain bacteria, by means of neutrophil extracellular traps (NETs) formation, is involved in pathogenesis of in mare endometrial fibrosis (endometrosis). Moreover, persistent macrophages and mast cell activation could also have pro-fibrotic roles by secreting great amounts of pro-fibrotic factors and lead to fibrosis. This review will highlight the involvement of immune key components of the innate and adaptive immune system and their products in equine uterus and their contribution to reproductive physiological function and uterine disorders.


Assuntos
Endométrio/fisiologia , Cavalos/fisiologia , Monócitos/fisiologia , Neutrófilos/fisiologia , Animais , Endométrio/imunologia , Epigênese Genética , Feminino , Cavalos/genética , Cavalos/imunologia , Monócitos/imunologia , Neutrófilos/imunologia
16.
Reprod Domest Anim ; 54 Suppl 3: 46-52, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31512314

RESUMO

Inflammation and fibroproliferative diseases may be modulated by epigenetic changes. Therefore, we suggest that epigenetic mechanisms could be involved in equine endometrosis pathogenesis. DNA methylation is one of the methods to evaluate epigenetics, through the transcription of methyltransferases (DNMT1, DNMT3A, DNMT3B). The correlation between DNMTs and collagen (COL) transcripts was assessed for the different Kenney and Doig's (Current Therapy in Theriogenology. Philadelphia: WB Saunders; 1986) endometrium categories. Endometrial biopsies were randomly collected from cyclic mares. Histological classification (category I, n = 13; II A, n = 17; II B, n = 12; and III, n = 7) and evaluation of COL1A2, COL3A1 and DNMTs transcripts by qPCR, were performed. Data were analysed by one-way analysis of variance (ANOVA), Kruskal-Wallis test and Pearson correlation. As mares aged, there was an increase in endometrium fibrosis (p < .01), and in DNMT1 mRNA (p < .001). Considering DNMT3B transcripts for each category, there was an increase with fibrosis (p < .05). No changes were observed for DNMT1 and DNMT3A transcripts. However, DNMT3A mRNA levels were the highest in all categories (p < .01). In category I endometrium, a positive correlation was observed for transcripts of all DNMTs in both COLs (p < .01). In category IIA, this correlation was also maintained for all DNMTs transcripts in COL1A2 (p < .05), but only for DNMT3B in COL3A1 (p < .05). In category IIB, there was a positive correlation between DNMT3B and COL3A1 (p < .05). In category III, a positive correlation was only observed between DNMT3B and COL3A1 (p < .05). Our results suggest that there is a disturbance in COLs and DNMTs correlation during fibrosis.


Assuntos
Colágeno/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Endometrite/veterinária , Doenças dos Cavalos/metabolismo , Envelhecimento/fisiologia , Animais , Colágeno/genética , Metilação de DNA , Endometrite/genética , Endometrite/metabolismo , Endométrio/patologia , Feminino , Fibrose/fisiopatologia , Doenças dos Cavalos/genética , Cavalos , RNA Mensageiro
17.
Domest Anim Endocrinol ; 67: 1-10, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30522057

RESUMO

Prostaglandin E2 (PGE2) has contradictory effects in many organs. It may have proinflammatory, anti-inflammatory, or anti-fibrotic roles, depending on the type of receptors to which it binds. By signaling through its receptors EP2 and EP4, PGE2 mediates anti-inflammatory and anti-fibrotic actions. In spite of chronic endometrial fibrosis (endometrosis) being a major cause of mare infertility, its pathogenesis is not fully understood. We have shown that contact of mare endometrium in vitro with neutrophil extracellular traps (NETs) proteases favors endometrial collagen type I production. Therefore, we investigated the involvement of the PGE2 pathway in collagen deposition in mare endometrium, challenged in vitro with proteases present in NETs. Mare endometria (Kenney and Doig categories I/IIA and IIB/III), obtained in the follicular phase (FLP) and mid-luteal phase (MLP), were incubated for 24 h with components found in NETs (elastase, cathepsin-G, and myeloperoxidase). Secretion of PGE2 and transcripts for specific PGE synthase (PGES) and PGE2 receptors (EP2 and EP4) were evaluated. Impaired PGE2 production and low EP2 transcript abundance depended on the endometrial category and estrous cycle phase. Impairment of PGE2 and/or EP2 might play a role in FLP (category IIB/III) and MLP (I/IIA) endometrial fibrogenesis because of the reduction in its antifibrotic capacity. In conclusion, priming of the endometrium with endogenous ovarian steroids might inhibit the antifibrotic PGE2 pathway either in healthy or pathologic tissues with collagen formation after NETs proteases action.


Assuntos
Dinoprostona/fisiologia , Endometriose/veterinária , Endométrio/patologia , Armadilhas Extracelulares/fisiologia , Doenças dos Cavalos/etiologia , Animais , Colágeno/metabolismo , Dinoprostona/biossíntese , Endometriose/etiologia , Endometriose/metabolismo , Endométrio/química , Endométrio/metabolismo , Ciclo Estral/fisiologia , Armadilhas Extracelulares/enzimologia , Feminino , Fibrose , Doenças dos Cavalos/patologia , Cavalos , Infertilidade Feminina/etiologia , Infertilidade Feminina/veterinária , Peptídeo Hidrolases/metabolismo , Prostaglandina-E Sintases/genética , RNA Mensageiro/análise , Receptores de Prostaglandina E/genética , Transdução de Sinais/efeitos dos fármacos , Técnicas de Cultura de Tecidos
18.
Reprod Domest Anim ; 53 Suppl 2: 66-69, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30238664

RESUMO

We have shown that bacteria induce neutrophil extracellular traps (NETs) in mare endometrium. Besides killing pathogens, NETs may contribute for endometrosis (chronic endometrium fibrosis). Since elastase (ELA) is a NETs component that regulates fibrosis and prostaglandin (PG) output, the aim was to evaluate if inhibition of ELA would affect collagen 1 (COL1) transcription and PGs secretion by endometrium explants, in different estrous cycle phases. Follicular-FP (n = 8) and mid luteal-MLP (n = 7) phases explants were cultured for 24-48 hr with medium alone (Control), ELA (0.5 µg/ml,1 µg/ml), sivelestat - ELA inhibitor (INH,10 µg/ml), or ELA (0.5 µg/ml,1 µg/ml) + INH (10 µg/ml). COL1 gene transcription was done by qRT-PCR and PGE2 and PGF2 α determination in culture medium by EIA. In FP, at 24 hr, ELA0.5 increased COL1 transcription (p < 0.001) but its inhibition (ELA0.5 + INH10) decreased COL1 transcription (p < 0.01) and PGF2 α production (p < 0.05). Also, ELA0.5 + INH10 or ELA1 + INH10 raised PGE2 production (p < 0.01). At 48 hr, ELA1 increased COL1 transcription (p < 0.01) and PGF2 α production (p < 0.001), but its inhibition (ELA1 + INH10) decreased these actions (p < 0.01; p < 0.05, respectively). Besides, ELA1 + INH10 incubation increased PGE2 (p < 0.05). PGF2 α also augmented with ELA0.5 (p < 0.001), but lowered with ELA0.5 + INH10 (p < 0.01). In MLP, ELA0.5 up-regulated COL1 transcription (24 hr, p < 0.01; 48 hr, p < 0.001), but ELA0.5 + INH10 decreased it (24 hr, p < 0.05; 48 hr, p < 0.001). At 48 hr, incubation with ELA1 also increased COL1 transcription and PGF2 α production (p < 0.05), but PGF2 α production decreased with ELA1 + INH10 incubation (p < 0.05). PGE2 production was higher in ELA1 + INH10 incubation (p < 0.05). Therefore, ELA inhibition may reduce the establishment of mare endometrial fibrosis by stimulating the production of anti-fibrotic PGE2 and inhibiting pro-fibrotic PGF2 α.


Assuntos
Dinoprosta/metabolismo , Dinoprostona/metabolismo , Endométrio/efeitos dos fármacos , Cavalos/fisiologia , Elastase Pancreática/farmacologia , Animais , Colágeno/genética , Colágeno/metabolismo , Ciclo Estral , Feminino
19.
Cytokine ; 110: 316-327, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29627157

RESUMO

In the present report we describe the involvement of transforming growth factor B1 (TGF) in functional regression and structural luteolysis in the mare. Firstly, TGF and its receptors activin-like kinase (ALK) 5 and TGF receptor 2 were identified in corpus luteum (CL) steroidogenic, endothelial and fibroblast-like cells. Also, TGF and ALK5 protein expression were shown to be increased in Mid-, and Late-CL (p < 0.05). Subsequently, using an in vitro model with Mid-CL cells, we studied the role of TGF on secretory activity and cell viability. Cell treatment with TGF decreased progesterone (P4) and prostaglandin (PG) E2 concentrations in culture media (p < 0.05), and downregulated mRNA and protein of StAR, CYP11A1, cPGES and mPGES1 (p < 0.05). Conversely, TGF augmented PGF2a concentration in culture media, through PTGS2 and PGFS gene expression activation (p < 0.05). When cells were incubated with PGF2a, both TGF and ALK5 were upregulated (p < 0.05). Additionally, treatment with the pharmacological inhibitor of ALK5, ALK4 and ALK7 - SB431542 (SB) attenuated PGF2a functional and structural luteolytic actions. Indeed, SB blocked: (i) PGF2a inhibitory effect on StAR, CYP11A1, 3BHSD and mPGES1; (ii) PGF2a auto-amplification signal via PTGS2 and PGFS expression (p < 0.05); (iii) the PGF2a-induced BAX and FASL expression (p < 0.05). Finally, TGF decreased cell viability (p < 0.05) and promoted caspase 3 activity (p = 0.08) and the expression of pro-apoptotic FASL and BAX (p < 0.05). Our results suggest that TGF supports functional regression and structural luteolysis, and also confirm the importance of ALK5, ALK4 and ALK7 activation during PGF2a mediated luteolysis in mares.


Assuntos
Sobrevivência Celular/fisiologia , Células Lúteas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Receptores de Ativinas Tipo I/metabolismo , Animais , Caspase 3/metabolismo , Células Cultivadas , Corpo Lúteo/metabolismo , Dinoprostona/metabolismo , Regulação para Baixo/fisiologia , Feminino , Expressão Gênica/fisiologia , Cavalos , Luteólise/metabolismo , Progesterona/metabolismo , RNA Mensageiro/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo
20.
Theriogenology ; 113: 8-18, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29452855

RESUMO

Neutrophil extracellular traps (NETs) are DNA complexes carrying nuclear and cytoplasmic proteins, such as elastase (ELA), cathepsin-G (CAT) and myeloperoxidase (MPO). Mare endometrosis is a chronic degenerative process characterized by excessive collagen in endometrium. While NETs fight bacteria that cause endometritis, they may trigger endometrial fibrogenesis. The aim was to evaluate the in vitro effect of some NETs components on mare endometrial fibrogenesis and determine its relationship with histopathology or estrous cycle. Endometrial explants were incubated with NETs components (ELA, CAT, MPO or oxytocin). Collagen type I (COL1) protein and type I and III (COL3) gene transcription were evaluated in follicular and mid-luteal phases endometria (Kenney and Doig type I/IIA and IIB/III). Increased COL1 occurred with all NETs proteins, although endometrial response to each NETs protease depended on estrous cycle and/or endometrial category. Since ELA enhanced COL1 production, NETs persistence might be linked to endometrosis. Estrous cycle influenced COL1 protein concentration and COL3 transcripts, suggesting that follicular phase may favor endometrial collagen production. However, luteal phase endometria with moderate or severe lesions may be also susceptible to fibrotic effects of NETs constituents. These data propose that NETs involvement in chronic endometritis in mares may act as putative endometrial fibrogenic mediators.


Assuntos
Colágeno/fisiologia , Endométrio/efeitos dos fármacos , Armadilhas Extracelulares/química , Armadilhas Extracelulares/fisiologia , Cavalos/fisiologia , Neutrófilos/fisiologia , Animais , Sobrevivência Celular , Endométrio/fisiologia , Ciclo Estral , Feminino , Técnicas de Cultura de Tecidos/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...