Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ground Water ; 59(6): 808-818, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34169516

RESUMO

Many of the world's major aquifers are under severe stress as a result of intensive pumping to support irrigated agriculture and provide drinking water supplies for millions. The question of what the future holds for these aquifers is one of global importance. Without better information about subsurface conditions, it will be difficult to reliably assess an aquifer's response to management actions and climatic stresses. One important but underutilized source of information is the data from monitoring well networks that provide near-continuous records of water levels through time. Most organizations running these networks are, by necessity, primarily focused on network maintenance. The result is that relatively little attention is given to interpretation of the acquired hydrographs. However, embedded in those hydrographs is valuable information about subsurface conditions and aquifer responses to natural and anthropogenic stresses. We demonstrate the range of insights that can be gleaned from such hydrographs using data from the High Plains aquifer index well network of the Kansas Geological Survey. We show how information about an aquifer's hydraulic state and lateral extent, the nature of recharge, the hydraulic connection to the aquifer and nearby pumping wells, and the expected response to conservation-based pumping reductions can be extracted from these hydrographs. The value of this information is dependent on accurate water-level measurements; errors in those measurements can make it difficult to fully exploit the insights that water-well hydrographs can provide. We therefore conclude by presenting measures that can help reduce the potential for such errors.


Assuntos
Água Subterrânea , Poços de Água , Agricultura , Geologia , Abastecimento de Água
2.
Ground Water ; 51(2): 180-90, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22978300

RESUMO

Water level changes in wells provide a direct measure of the impact of groundwater development at a scale of relevance for management activities. Important information about aquifer dynamics and an aquifer's future is thus often embedded in hydrographs from continuously monitored wells. Interpretation of those hydrographs using methods developed for pumping-test analyses can provide insights that are difficult to obtain via other means. These insights are demonstrated at two sites in the High Plains aquifer in western Kansas. One site has thin unconfined and confined intervals separated by a thick aquitard. Pumping-induced responses in the unconfined interval indicate a closed (surrounded by units of relatively low permeability) system that is vulnerable to rapid depletion with continued development. Responses in the confined interval indicate that withdrawals are largely supported by leakage. Given the potential for rapid depletion of the unconfined interval, the probable source of that leakage, it is likely that large-scale irrigation withdrawals will not be sustainable in the confined interval beyond a decade. A second site has a relatively thick unconfined aquifer with responses that again indicate a closed system. However, unlike the first site, previously unrecognized vertical inflow can be discerned in data from the recovery periods. In years of relatively low withdrawals, this inflow can produce year-on-year increases in water levels, an unexpected occurrence in western Kansas. The prevalence of bounded-aquifer responses at both sites has important ramifications for modeling studies; transmissivity values from pumping tests, for example, must be used cautiously in regional models of such systems.


Assuntos
Água Subterrânea , Hidrologia/métodos , Kansas
3.
Ground Water ; 49(4): 525-33, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21083556

RESUMO

Hydrologists have long recognized that changes in barometric pressure can produce changes in water levels in wells. The barometric response function (BRF) has proven to be an effective means to characterize this relationship; we show here how it can also be utilized to glean valuable insights into semi-confined aquifer systems. The form of the BRF indicates the degree of aquifer confinement, while a comparison of BRFs between wells sheds light on hydrostratigraphic continuity. A new approach for estimating hydraulic properties of aquitards from BRFs has been developed and verified. The BRF is not an invariant characteristic of a well; in unconfined or semi-confined aquifers, it can change with conditions in the vadose zone. Field data from a long-term research site demonstrate the hydrostratigraphic insights that can be gained from monitoring water levels and barometric pressure. Such insights should be of value for a wide range of practical applications.


Assuntos
Pressão Atmosférica , Hidrodinâmica , Ciclo Hidrológico , Tempo (Meteorologia) , Ciências da Terra , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...