Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35682944

RESUMO

Endometrial cancer (EC) is the second most frequent gynecological cancer worldwide. Although improvements in EC classification have enabled an accurate establishment of disease prognosis, women with a high-risk or recurrent EC face a dramatic situation due to limited further treatment options. Therefore, new strategies that closely mimic the disease are required to maximize drug development success. Patient-derived xenografts (PDXs) are widely recognized as a physiologically relevant preclinical model. Hence, we propose to molecularly and histologically validate EC PDX models. To reveal the molecular landscape of PDXs generated from 13 EC patients, we performed histological characterization and whole-exome sequencing analysis of tumor samples. We assessed the similarity between PDXs and their corresponding patient's tumor and, additionally, to an extended cohort of EC patients obtained from The Cancer Genome Atlas (TCGA). Finally, we performed functional enrichment analysis to reveal differences in molecular pathway activation in PDX models. We demonstrated that the PDX models had a well-defined and differentiated molecular profile that matched the genomic profile described by the TCGA for each EC subtype. Thus, we validated EC PDX's potential to reliably recapitulate the majority of histologic and molecular EC features. This work highlights the importance of a thorough characterization of preclinical models for the improvement of the success rate of drug-screening assays for personalized medicine.


Assuntos
Neoplasias do Endométrio , Recidiva Local de Neoplasia , Animais , Modelos Animais de Doenças , Neoplasias do Endométrio/patologia , Feminino , Genômica , Xenoenxertos , Humanos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Hypertens ; 34(9): 1752-65, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27379538

RESUMO

BACKGROUND: Angiotensin-converting enzyme 2 (ACE2) deletion worsens kidney injury, and its amplification ameliorates diabetic nephropathy. Male sex increases the incidence, prevalence, and progression of chronic kidney disease in our environment. METHOD: Here, we studied the effect of ACE2 deficiency and gonadectomy (GDX) on diabetic nephropathy and its relationship with fibrosis, protein kinase B (Akt) activation, and the expression of several components of the renin-angiotensin system (RAS).Mice were injected with streptozotocin to induce diabetes and followed for 19 weeks. Physiological and renal parameters were studied in wild-type and ACE2 knockout (ACE2KO) male mice with and without GDX. RESULTS: Diabetic ACE2KO showed increased blood pressure (BP), glomerular injury, and renal fibrosis compared with diabetic wild-type. Gonadectomized diabetic ACE2KO presented a decrease in BP. In the absence of ACE2, GDX attenuated albuminuria and renal lesions, such as mesangial matrix expansion and podocyte loss. Both, α-smooth muscle actin accumulation and collagen deposition were significantly decreased in renal cortex of gonadectomized diabetic ACE2KO but not diabetic wild-type mice. GDX also reduced circulating ACE activity in ACE2KO mice. Loss of ACE2 modified the effect of GDX on cortical gene expression of RAS in diabetic mice. Akt phosphorylation in renal cortex was increased by diabetes and loss of ACE2 and decreased by GDX in control and diabetic ACE2KO but not in wild-type mice. CONCLUSIONS: Our results suggest that GDX may exert a protective effect within the kidney under pathological conditions of diabetes and ACE2 deficiency. This renoprotection may be ascribed to different mechanisms such as decrease in BP, modulation of RAS, and downregulation of Akt-related pathways.


Assuntos
Pressão Sanguínea/fisiologia , Diabetes Mellitus Experimental/metabolismo , Glomérulos Renais/fisiopatologia , Orquiectomia , Peptidil Dipeptidase A/metabolismo , Sistema Renina-Angiotensina/fisiologia , Enzima de Conversão de Angiotensina 2 , Animais , Masculino , Camundongos , Camundongos Knockout
3.
Am J Physiol Renal Physiol ; 310(6): F534-46, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26697977

RESUMO

Circulating and renal activity of angiotensin-converting enzyme 2 (ACE2) is increased in non-obese diabetic (NOD) mice. Because paricalcitol has been reported to protect against diabetic nephropathy, we investigated the role of paricalcitol in modulating ACE2 in these mice. In addition, renal ADAM17, a metalloprotease implied in ACE2 shedding, was assessed. NOD female and non-diabetic control mice were studied for 21 days after diabetes onset and divided into various treatment groups. Diabetic animals received either vehicle; 0.4 or 0.8 µg/kg paricalcitol, aliskiren, or a combination of paricalcitol and aliskiren. We then studied the effect of paricalcitol on ACE2 expression in proximal tubular epithelial cells. Paricalcitol alone or in combination with aliskiren resulted in significantly reduced circulating ACE2 activity in NOD mice but there were no changes in urinary albumin excretion. Serum renin activity was significantly decreased in mice that received aliskiren but no effect was found when paricalcitol was used alone. Renal content of ADAM17 was significantly decreased in animals that received a high dose of paricalcitol. Renal and circulating oxidative stress (quantified by plasma H2O2 levels and immunolocalization of nitrotyrosine) were reduced in high-dose paricalcitol-treated mice compared with non-treated diabetic mice. In culture, paricalcitol incubation resulted in a significant increase in ACE2 expression compared with nontreated cells. In NOD mice with type 1 diabetes, paricalcitol modulates ACE2 activity, ADAM17, and oxidative stress renal content independently from the glycemic profile and urinary albumin excretion. In tubular cells, paricalcitol may modulate ACE2 by blocking its shedding. In the early stage of diabetic nephropathy, paricalcitol treatment counterbalances the effect of diabetes on circulating ACE2 activity. Our results suggest that additional use of paricalcitol may be beneficial in treating patients with diabetes under standard therapeutic strategies.


Assuntos
Proteínas ADAM/metabolismo , Nefropatias Diabéticas/prevenção & controle , Ergocalciferóis/uso terapêutico , Rim/efeitos dos fármacos , Peptidil Dipeptidase A/sangue , Proteína ADAM17 , Enzima de Conversão de Angiotensina 2 , Animais , Pressão Sanguínea , Diabetes Mellitus Experimental , Avaliação Pré-Clínica de Medicamentos , Ergocalciferóis/farmacologia , Feminino , Rim/metabolismo , Camundongos Endogâmicos NOD , Estresse Oxidativo/efeitos dos fármacos , Proteinúria/prevenção & controle , Distribuição Aleatória , Renina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...