Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
EMBO Rep ; 23(11): e54446, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36194627

RESUMO

Sterile inflammation is a central element in liver diseases. The immune response following injurious stimuli involves hepatic infiltration of neutrophils and monocytes. Neutrophils are major effectors of liver inflammation, rapidly recruited to sites of inflammation, and can augment the recruitment of other leukocytes. The NLRP3 inflammasome has been increasingly implicated in severe liver inflammation, fibrosis, and cell death. In this study, the role of NLRP3 activation in neutrophils during liver inflammation and fibrosis was investigated. Mouse models with neutrophil-specific expression of mutant NLRP3 were developed. Mutant mice develop severe liver inflammation and lethal autoinflammation phenocopying mice with a systemic expression of mutant NLRP3. NLRP3 activation in neutrophils leads to a pro-inflammatory cytokine and chemokine profile in the liver, infiltration by neutrophils and macrophages, and an increase in cell death. Furthermore, mutant mice develop liver fibrosis associated with increased expression of pro-fibrogenic genes. Taken together, the present work demonstrates how neutrophils, driven by the NLRP3 inflammasome, coordinate other inflammatory myeloid cells in the liver, and propagate the inflammatory response in the context of inflammation-driven fibrosis.


Assuntos
Hepatite , Inflamassomos , Camundongos , Animais , Inflamassomos/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neutrófilos/metabolismo , Hepatite/genética , Fibrose , Inflamação/metabolismo , Interleucina-1beta/metabolismo
3.
Cell Mol Gastroenterol Hepatol ; 14(4): 751-767, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35787975

RESUMO

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. The NLRP3 inflammasome, a platform for caspase-1 activation and release of interleukin 1ß, is increasingly recognized in the induction of inflammation and liver fibrosis during NAFLD. However, the cell-specific contribution of NLRP3 inflammasome activation in NAFLD remains unknown. METHODS: To investigate the role of NLRP3 inflammasome activation in hepatocytes, hepatic stellate cells (HSCs) and myeloid cells, a conditional Nlrp3 knock-out mouse was generated and bred to cell-specific Cre mice. Both acute and chronic liver injury models were used: lipopolysaccharide/adenosine-triphosphate to induce in vivo NLRP3 activation, choline-deficient, L-amino acid-defined high-fat diet, and Western-type diet to induce fibrotic nonalcoholic steatohepatitis (NASH). In vitro co-culture studies were performed to dissect the crosstalk between myeloid cells and HSCs. RESULTS: Myeloid-specific deletion of Nlrp3 blunted the systemic and hepatic increase in interleukin 1ß induced by lipopolysaccharide/adenosine-triphosphate injection. In the choline-deficient, L-amino acid-defined high-fat diet model of fibrotic NASH, myeloid-specific Nlrp3 knock-out but not hepatocyte- or HSC-specific knock-out mice showed significant reduction in inflammation independent of steatosis development. Moreover, myeloid-specific Nlrp3 knock-out mice showed ameliorated liver fibrosis and decreased HSC activation. These results were validated in the Western-type diet model. In vitro co-cultured studies with human cell lines demonstrated that HSC can be activated by inflammasome stimulation in monocytes, and this effect was significantly reduced if NLRP3 was downregulated in monocytes. CONCLUSIONS: The study provides new insights in the cell-specific role of NLRP3 in liver inflammation and fibrosis. NLRP3 inflammasome activation in myeloid cells was identified as crucial for the progression of NAFLD to fibrotic NASH. These results may have implications for the development of cell-specific strategies for modulation of NLRP3 activation for treatment of fibrotic NASH.


Assuntos
Inflamassomos , Cirrose Hepática , Células Mieloides , Proteína 3 que Contém Domínio de Pirina da Família NLR , Hepatopatia Gordurosa não Alcoólica , Adenosina , Aminoácidos , Animais , Caspases , Colina , Hepatite/genética , Hepatite/imunologia , Humanos , Inflamassomos/genética , Inflamassomos/imunologia , Inflamação , Interleucina-1beta/imunologia , Lipopolissacarídeos , Cirrose Hepática/genética , Cirrose Hepática/imunologia , Camundongos , Camundongos Knockout , Células Mieloides/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/imunologia , Polifosfatos
4.
Sci Rep ; 11(1): 24194, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921208

RESUMO

Inflammatory changes in the liver represent a key feature of non-alcoholic steatohepatitis (NASH), the progressive form of non-alcoholic fatty liver disease (NAFLD). Innate immune activation including hepatic neutrophilic infiltration acts as an important inflammatory trigger as well as a potential mediator of inflammation resolution. In this study, we dissected the effects of neutrophil depletion via anti-lymphocyte antigen 6 complex locus G6D (Ly6G) antibodies administration during ongoing high fat-fructose-cholesterol (FFC) diet-induced murine NASH and during inflammation resolution by switching into a low-fat control diet. During NASH progression, protective effects were shown as HSC activation, cell infiltration and activation of pro-inflammatory macrophages were ameliorated. Furthermore, these changes were contrasted with the effects observed when neutrophil depletion was performed during the resolution phase. Impaired resolving mechanisms, such as a failure to balance the pro and anti-inflammatory cytokines ratio, deficient macrophage phenotypic switch into a pro-restorative profile, and defective repair and remodeling processes were observed when neutrophils were depleted in this scenario. This study described phase-dependent contrasting roles of neutrophils as triggers and pro-resolutive mediators of liver injury and fibrosis associated with diet-induced NASH in mice. These findings have important translational implications at the time of designing NASH therapeutic strategies.


Assuntos
Cirrose Hepática/metabolismo , Neutrófilos/metabolismo , Animais , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Frutose/metabolismo , Hidroxiprolina/metabolismo , Fígado , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
5.
Semin Liver Dis ; 41(2): 150-162, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34107544

RESUMO

Traditional concepts have classically viewed resolution of inflammation as a passive process yet insight into the pathways by which inflammation is resolved has challenged this idea. Resolution has been revealed as a highly dynamic and active event that is essential to counteract the dysregulated inflammatory response that drives diverse disease states. Abrogation of the hepatic inflammatory response through the stimulation of proresolving mechanisms represents a new paradigm in the setting of chronic inflammatory-driven liver diseases. Elucidation of the role of different cells of the innate and adaptive immune system has highlighted the interplay between them as an important orchestrator of liver repair. A finely tuned interaction between neutrophils and macrophages has risen as revolutionary mechanism that drives the restoration of hepatic function and architecture. Specialized proresolving mediators have also been shown to act as stop signals of the inflammatory response and promote resolution as well as tissue regeneration. In this review, we discuss the discovery and understanding of the mechanisms by which inflammation is resolved and highlight novel proresolving pathways that represent promising therapeutic strategies.


Assuntos
Hepatite , Inflamação , Humanos , Mediadores da Inflamação , Macrófagos
6.
Langenbecks Arch Surg ; 406(1): 1-17, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32833053

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) has become the most common form of chronic liver disease in both adults and children worldwide. Understanding the pathogenic mechanisms behind NAFLD provides the basis for identifying risk factors, such as metabolic syndrome, pancreatoduodenectomy, and host genetics, that lead to the onset and progression of the disease. The progression from steatosis to more severe forms, such as steatohepatitis, fibrosis, and cirrhosis, leads to an increased number of liver and non-liver complications. PURPOSE: NAFLD-associated end-stage liver disease (ESLD) and hepatocellular carcinoma (HCC) often require surgery as the only curative treatment. In particular, the presence of NAFLD together with the coexisting metabolic comorbidities that usually occur in these patients requires careful preoperative diagnosis and peri-/postoperative management. Bariatric surgery, liver resection, and liver transplantation (LT) have shown favorable results for weight loss, HCC, and ESLD in patients with NAFLD. The LT demand and the increasing spread of NAFLD in the donor pool reinforce the already existing lack of donor organs. CONCLUSION: In this review, we will discuss the diverse mechanisms underlying NAFLD, its implications for surgery, and the challenges for patient management.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Carcinoma Hepatocelular/patologia , Progressão da Doença , Humanos , Fígado/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...