Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gene Regul Mech ; 1863(9): 194599, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32599085

RESUMO

In response to environmental changes cells rapidly rearrange their gene expression pattern in order to adapt to the new conditions. Chromatin remodeling is critical for this process playing a major role in the induction of genes involved in stress responses. We demonstrated previously that TPK1, encoding one of the catalytic subunits of PKA from Saccharomyces cerevisiae, is upregulated under heat shock. Herein, we investigate the chromatin remodeling of the TPK1, TPK2 and TPK3 promoters under heat stress. The TPK1 promoter is the only one that presents three positioned nucleosomes. Upon heat stress or osmostress these nucleosomes are evicted in clear correlation with promoter activation and upregulation of TPK1 mRNA levels. We find that remodelers SWI/SNF, RSC, INO80 and ISW1 participate in chromatin remodeling of the TPK1 promoter under thermal stress conditions. RSC and INO80 are necessary for nucleosomes positioning and contribute to repression of the TPK1 promoter under normal conditions while SWI/SNF participates in the eviction of nucleosomes after heat stress. SWI/SNF complex is recruited to the TPK1 promoter upon heat shock in a Msn2/4-dependent manner. Finally, both Tpk1 and Tpk2 catalytic subunits are recruited to the TPK1 promoter with opposite association patterns. Tpk1 catalytic activity is necessary for nucleosome rearrangement on the TPK1 promoter while Tpk2 and Tpk3 inhibit the promoter activity and maintain a repressive chromatin conformation. This work enlightens the mechanism of regulation of TPK1 expression during heat-stress, contributing to the knowledge of specificity in fine-tuning the cAMP-PKA signaling circuit.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas Quinases Dependentes de AMP Cíclico/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Proteínas de Ligação a DNA/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica
2.
Yeast ; 34(12): 495-508, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28812308

RESUMO

Yeast cells can adapt their growth in response to the nutritional environment. Glucose is the favourite carbon source of Saccharomyces cerevisiae, which prefers a fermentative metabolism despite the presence of oxygen. When glucose is consumed, the cell switches to the aerobic metabolism of ethanol, during the so-called diauxic shift. The difference between fermentative and aerobic growth is in part mediated by a regulatory mechanism called glucose repression. During glucose derepression a profound gene transcriptional reprogramming occurs and genes involved in the utilization of alternative carbon sources are expressed. Protein kinase A (PKA) controls different physiological responses following the increment of cAMP as a consequence of a particular stimulus. cAMP-PKA is one of the major pathways involved in the transduction of glucose signalling. In this work the regulation of the promoters of the PKA subunits during respiratory and fermentative metabolism are studied. It is demonstrated that all these promoters are upregulated in the presence of glycerol as carbon source through the Snf1/Cat8 pathway. However, in the presence of glucose as carbon source, the regulation of each PKA promoter subunits is different and only TPK1 is repressed by the complex Hxk2/Mig1 in the presence of active Snf1. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Saccharomyces cerevisiae/enzimologia , Transcrição Gênica/fisiologia , Imunoprecipitação da Cromatina , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/genética , Regulação para Baixo , Fermentação , Glucose/metabolismo , Glicerol/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Fosforilação , Plasmídeos , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Regulação para Cima , beta-Galactosidase/metabolismo
3.
FEMS Yeast Res ; 16(5)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27188886

RESUMO

The cAMP-dependent protein kinase (PKA) signaling is a broad pathway that plays important roles in the transduction of environmental signals triggering precise physiological responses. However, how PKA achieves the cAMP-signal transduction specificity is still in study. The regulation of expression of subunits of PKA should contribute to the signal specificity. Saccharomyces cerevisiae PKA holoenzyme contains two catalytic subunits encoded by TPK1, TPK2 and TPK3 genes, and two regulatory subunits encoded by BCY1 gene. We studied the activity of these gene promoters using a fluorescent reporter synthetic genetic array screen, with the goal of systematically identifying novel regulators of expression of PKA subunits. Gene ontology analysis of the identified modulators showed enrichment not only in the category of transcriptional regulators, but also in less expected categories such as lipid and phosphate metabolism. Inositol, choline and phosphate were identified as novel upstream signals that regulate transcription of PKA subunit genes. The results support the role of transcription regulation of PKA subunits in cAMP specificity signaling. Interestingly, known targets of PKA phosphorylation are associated with the identified pathways opening the possibility of a reciprocal regulation. PKA would be coordinating different metabolic pathways and these processes would in turn regulate expression of the kinase subunits.


Assuntos
Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transcrição Gênica , Fusão Gênica Artificial , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Perfilação da Expressão Gênica , Genes Reporter , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
PLoS One ; 7(9): e46146, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049963

RESUMO

The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac109 core gene has been previously characterized as an essential late gene. Our results showed that budded virions could be detected in supernatants of infected Sf-9 cells, even when ac109 knockout viruses displayed a single-cell infection phenotype. Moreover, confocal microscopy analysis revealed that budded virions can enter the cytoplasm but are unable to enter the cell nucleus. This defect could be repaired by complementing ac109 in trans. In addition, polyhedra of normal size could be detected in Sf-9 nuclei infected with ac109 knockout viruses. However, electron microscopy demonstrated that these occlusion bodies were empty. Altogether, these results indicate that ac109 is required for infectivity of both phenotypes of virus.


Assuntos
Núcleo Celular/virologia , Nucleopoliedrovírus/metabolismo , Proteínas Virais/metabolismo , Vírion/metabolismo , Vírion/fisiologia , Animais , Linhagem Celular , Nucleopoliedrovírus/genética , Spodoptera , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...