Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879719

RESUMO

Substance use disorders (SUD) and drug addiction are major threats to public health, impacting not only the millions of individuals struggling with SUD, but also surrounding families and communities. One of the seminal challenges in treating and studying addiction in human populations is the high prevalence of co-morbid conditions, including an increased risk of contracting a human immunodeficiency virus (HIV) infection. Of the ~15 million people who inject drugs globally, 17% are persons with HIV. Conversely, HIV is a risk factor for SUD because chronic pain syndromes, often encountered in persons with HIV, can lead to an increased use of opioid pain medications that in turn can increase the risk for opioid addiction. We hypothesize that SUD and HIV exert shared effects on brain cell types, including adaptations related to neuroplasticity, neurodegeneration, and neuroinflammation. Basic research is needed to refine our understanding of these affected cell types and adaptations. Studying the effects of SUD in the context of HIV at the single-cell level represents a compelling strategy to understand the reciprocal interactions among both conditions, made feasible by the availability of large, extensively-phenotyped human brain tissue collections that have been amassed by the Neuro-HIV research community. In addition, sophisticated animal models that have been developed for both conditions provide a means to precisely evaluate specific exposures and stages of disease. We propose that single-cell genomics is a uniquely powerful technology to characterize the effects of SUD and HIV in the brain, integrating data from human cohorts and animal models. We have formed the Single-Cell Opioid Responses in the Context of HIV (SCORCH) consortium to carry out this strategy.

2.
Oecologia ; 201(2): 537-547, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36697878

RESUMO

Research on decomposer communities has traditionally focused on plant litter or deadwood. Even though carrion forms highly nutrient-rich necromass that enhance ecosystem heterogeneity, the factors influencing saprophytic communities remain largely unknown. For deadwood, experiments have shown that different drivers determine beetles (i.e., decay stage, microclimate, and space), fungi (i.e., decay stage and tree species) and bacteria (decay stage only) assemblages. To test the hypothesis that similar factors also structure carrion communities, we sampled 29 carcasses exposed for 30 days that included Cervus elaphus (N = 6), Capreolus capreolus (N = 18), and Vulpes vulpes (N = 5) in a mountain forest throughout decomposition. Beetles were collected with pitfall traps, while microbial communities were characterized using amplicon sequencing. Assemblages were determined with a focus from rare to dominant species using Hill numbers. With increasing focus on dominant species, the relative importance of carcass identity on beetles and space on bacteria increased, while only succession and microclimate remained relevant for fungi. For beetle and bacteria with focus on dominant species, host identity was more important than microclimate, which is in marked contrast to deadwood. We conclude that factors influencing carrion saprophytic assemblages show some consistency, but also differences from those of deadwood assemblages, suggesting that short-lived carrion and long-lasting deadwood both provide a resource pulse with different adaptions in insects and microbes. As with deadwood, a high diversity of carcass species under multiple decay stages and different microclimates support a diverse decomposer community.


Assuntos
Besouros , Ecossistema , Animais , Biodiversidade , Florestas , Insetos , Fungos
3.
Nucleic Acids Res ; 51(D1): D1075-D1085, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36318260

RESUMO

Scalable technologies to sequence the transcriptomes and epigenomes of single cells are transforming our understanding of cell types and cell states. The Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative Cell Census Network (BICCN) is applying these technologies at unprecedented scale to map the cell types in the mammalian brain. In an effort to increase data FAIRness (Findable, Accessible, Interoperable, Reusable), the NIH has established repositories to make data generated by the BICCN and related BRAIN Initiative projects accessible to the broader research community. Here, we describe the Neuroscience Multi-Omic Archive (NeMO Archive; nemoarchive.org), which serves as the primary repository for genomics data from the BRAIN Initiative. Working closely with other BRAIN Initiative researchers, we have organized these data into a continually expanding, curated repository, which contains transcriptomic and epigenomic data from over 50 million brain cells, including single-cell genomic data from all of the major regions of the adult and prenatal human and mouse brains, as well as substantial single-cell genomic data from non-human primates. We make available several tools for accessing these data, including a searchable web portal, a cloud-computing interface for large-scale data processing (implemented on Terra, terra.bio), and a visualization and analysis platform, NeMO Analytics (nemoanalytics.org).


Assuntos
Encéfalo , Bases de Dados Genéticas , Epigenômica , Multiômica , Transcriptoma , Animais , Camundongos , Genômica , Mamíferos , Primatas , Encéfalo/citologia , Encéfalo/metabolismo
4.
Elife ; 112022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473178

RESUMO

Maintaining water balance is a universal challenge for organisms living in terrestrial environments, especially for insects, which have essential roles in our ecosystem. Although the high surface area to volume ratio in insects makes them vulnerable to water loss, insects have evolved different levels of desiccation resistance to adapt to diverse environments. To withstand desiccation, insects use a lipid layer called cuticular hydrocarbons (CHCs) to reduce water evaporation from the body surface. It has long been hypothesized that the water-proofing capability of this CHC layer, which can confer different levels of desiccation resistance, depends on its chemical composition. However, it is unknown which CHC components are important contributors to desiccation resistance and how these components can determine differences in desiccation resistance. In this study, we used machine-learning algorithms, correlation analyses, and synthetic CHCs to investigate how different CHC components affect desiccation resistance in 50 Drosophila and related species. We showed that desiccation resistance differences across these species can be largely explained by variation in CHC composition. In particular, length variation in a subset of CHCs, the methyl-branched CHCs (mbCHCs), is a key determinant of desiccation resistance. There is also a significant correlation between the evolution of longer mbCHCs and higher desiccation resistance in these species. Given that CHCs are almost ubiquitous in insects, we suggest that evolutionary changes in insect CHC components can be a general mechanism for the evolution of desiccation resistance and adaptation to diverse and changing environments.


Assuntos
Dessecação , Drosophila , Animais , Drosophila/química , Ecossistema , Hidrocarbonetos/análise , Água
5.
J Forensic Sci ; 67(4): 1565-1578, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35349167

RESUMO

After death, microbes (including bacteria and fungi) colonize carrion from a variety of sources during the decomposition process. The predictable succession of microbes could be useful for forensics, such as postmortem submersion interval estimation (PMSI) for aquatic deaths. However, gaps exist in our understanding of microbial succession on submerged bone, particularly regarding longer-term decomposition (>1 year), fungal composition, and differences between internal and external microbial communities. To further explore this potential forensic tool, we described the postmortem microbial communities (bacteria and fungi) on and within submerged bones using targeted amplicon sequencing. We hypothesized predictable successional patterns of microbial colonization would be detected on the surface and within submerged bones, which would eventually converge to a similar microbial community. To best replicate forensic contexts, we sampled bones from replicate swine (Sus scrofa domesticus) carcasses submerged in a freshwater pond, every three months for nearly two years. Microbial bone (internal vs. external) community structure (taxa abundance and diversity) of bones differed for both bacteria and fungi, but internal and external communities did not converge to a similar structure. PMSI estimation models built with random forest regression of postmortem microbiomes were highly accurate (>80% variation explained in PMSI) and showed promise for forensic purposes. Overall, we provide further evidence that internal and external bone microbial communities submerged in an aquatic habitat are distinct and each community undergoes predictable succession, demonstrating potential utility in forensics for modeling PMSI in unattended deaths and/or cold cases.


Assuntos
Microbiota , Bactérias , Cadáver , Medicina Legal , Água Doce , Humanos , Mudanças Depois da Morte
6.
FEMS Microbiol Rev ; 46(1)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34468735

RESUMO

Understanding the interactions of ecosystems, humans and pathogens is important for disease risk estimation. This is particularly true for neglected and newly emerging diseases where modes and efficiencies of transmission leading to epidemics are not well understood. Using a model for other emerging diseases, the neglected tropical skin disease Buruli ulcer (BU), we systematically review the literature on transmission of the etiologic agent, Mycobacterium ulcerans (MU), within a One Health/EcoHealth framework and against Hill's nine criteria and Koch's postulates for making strong inference in disease systems. Using this strong inference approach, we advocate a null hypothesis for MU transmission and other understudied disease systems. The null should be tested against alternative vector or host roles in pathogen transmission to better inform disease management. We propose a re-evaluation of what is necessary to identify and confirm hosts, reservoirs and vectors associated with environmental pathogen replication, dispersal and transmission; critically review alternative environmental sources of MU that may be important for transmission, including invertebrate and vertebrate species, plants and biofilms on aquatic substrates; and conclude with placing BU within the context of other neglected and emerging infectious diseases with intricate ecological relationships that lead to disease in humans, wildlife and domestic animals.


Assuntos
Úlcera de Buruli , Mycobacterium ulcerans , Animais , Ecossistema , Humanos , Plantas
7.
PLoS One ; 15(12): e0243395, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33296399

RESUMO

Estimation of the postmortem interval in advanced postmortem stages is a challenging task. Although there are several approaches available for addressing postmortem changes of a (human) body or its environment (ecologically and/or biochemically), most are restricted to specific timeframes and/or individual and environmental conditions. It is well known, for instance, that buried bodies decompose in a remarkably different manner than on the ground surface. However, data on how established methods for PMI estimation perform under these conditions are scarce. It is important to understand whether and how postmortem changes are affected under burial conditions, if corrective factors could be conceived, or if methods have to be excluded for respective cases. We present the first multi-methodological assessment of human postmortem decomposition carried out on buried body donors in Europe, at the Amsterdam Research Initiative for Sub-surface Taphonomy and Anthropology (ARISTA) in the Netherlands. We used a multidisciplinary approach to investigate postmortem changes of morphology, skeletal muscle protein decomposition, presence of insects and other necrophilous animals as well as microbial communities (i.e., microbiomes) from August to November 2018 associated with two complete body exhumations and eight partial exhumations. Our results clearly display the current possibilities and limitations of methods for PMI estimation in buried remains and provide a baseline for future research and application.


Assuntos
Medicina Legal/métodos , Patologia Legal/métodos , Músculo Esquelético/química , Proteólise , Animais , Sepultamento , Morte , Exumação , Humanos , Insetos/fisiologia , Microbiota , Modelos Animais , Mudanças Depois da Morte
8.
PLoS One ; 15(6): e0234050, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32497084

RESUMO

Louse flies (Diptera: Hippoboscidae) are obligate ectoparasites that often cause behavioral, pathogenic, and evolutionary effects on their hosts. Interactions between ectoparasites and avian hosts, especially migrating taxa, may influence avian pathogen spread in tropical and temperate ecosystems and affect long-term survival, fitness and reproductive success. The purpose of this study was to characterize the vector-associated microbiome of ectoparasitic louse flies feeding on migrating raptors over the fall migration period. Surveys for louse flies occurred during fall migration (2015-2016) at a banding station in Pennsylvania, United States; flies were collected from seven species of migrating raptors, and we sequenced their microbial (bacteria and archaea) composition using high-throughput targeted amplicon sequencing of the 16S rRNA gene (V4 region). All louse flies collected belonged to the same species, Icosta americana. Our analysis revealed no difference in bacterial communities of louse flies retrieved from different avian host species. The louse fly microbiome was dominated by a primary endosymbiont, suggesting that louse flies maintain a core microbial structure despite receiving blood meals from different host species. Thus, our findings highlight the importance of characterizing both beneficial and potentially pathogenic endosymbionts when interpreting how vector-associated microbiomes may impact insect vectors and their avian hosts.


Assuntos
Migração Animal , Dípteros/microbiologia , Dípteros/fisiologia , Interações Hospedeiro-Parasita , Microbiota , Aves Predatórias/parasitologia , Animais
9.
J Forensic Sci ; 65(4): 1210-1220, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32073664

RESUMO

Microbial community assembly (MCA) of both human and nonhuman animal carcasses provides indicators useful for estimating the postmortem interval (PMI) in terrestrial settings. However, there are fewer studies estimating postmortem submersion intervals (PMSIs) in aquatic habitats. No aquatic studies to date assessed MCA in the context of a death investigation, with all previous studies focusing on important basic ecological questions. Within the context of a cold case investigation, we performed an experiment using replicate adult swine carcasses to describe postmortem MCA variability within a nonflowing aquatic habitat. Using high-throughput sequencing of carcass postmortem microbiomes, we described MCA variability and identified key taxa associated with decomposition in an aquatic habitat similar to the cold case body recovery site. We also modeled key taxa for estimating PMSIs, modeling within ±3 days (mean square error) postmortem using random forest regression. Our findings show significant changes in microbial communities as decomposition progressed, and several taxa were identified as important indicator taxa which may be useful for future estimates of PMSI. While descriptive, this study provides initial findings quantifying MCA variability within a nonflowing aquatic habitat. Within the context of the cold case investigation, we discuss how postmortem microbial samples collected at the time of body recovery could have been an important piece of evidence for understanding the PMSI of recovered remains. Additional experimental studies are needed to explicitly test and identify mechanisms associated with postmortem MCA variability in other habitats and under different temperature (e.g., seasons) conditions.


Assuntos
Patologia Legal/métodos , Imersão , Microbiota/genética , Mudanças Depois da Morte , Microbiologia da Água , Animais , Astacoidea , Calliphoridae , Comportamento Alimentar , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Insetos , Sanguessugas , Masculino , Modelos Animais , Reação em Cadeia da Polimerase , RNA Ribossômico 16S , Estatística como Assunto , Suínos , Adulto Jovem
10.
Chemosphere ; 212: 262-271, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30145418

RESUMO

Academics researchers and "citizen scientists" from 22 countries confirmed that yellow mealworms, the larvae of Tenebrio molitor Linnaeus, can survive by eating polystyrene (PS) foam. More detailed assessments of this capability for mealworms were carried out by12 sources: five from the USA, six from China, and one from Northern Ireland. All of these mealworms digested PS foam. PS mass decreased and depolymerization was observed, with appearance of lower molecular weight residuals and functional groups indicative of oxidative transformations in extracts from the frass (insect excrement). An addition of gentamycin (30 mg g-1), a bactericidal antibiotic, inhibited depolymerization, implicating the gut microbiome in the biodegradation process. Microbial community analyses demonstrated significant taxonomic shifts for mealworms fed diets of PS plus bran and PS alone. The results indicate that mealworms from diverse locations eat and metabolize PS and support the hypothesis that this capacity is independent of the geographic origin of the mealworms, and is likely ubiquitous to members of this species.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Besouros/metabolismo , Microbioma Gastrointestinal/fisiologia , Larva/metabolismo , Poliestirenos/metabolismo , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , China , Besouros/crescimento & desenvolvimento , Microbioma Gastrointestinal/efeitos dos fármacos , Gentamicinas/farmacologia , Larva/crescimento & desenvolvimento
11.
Microb Ecol ; 76(3): 719-728, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29549385

RESUMO

Ephemeral aquatic habitats and their associated microbial communities (microbiomes) play important roles in the growth and development of numerous aquatic insects, including mosquitoes (Diptera). Biological control agents, such as Bacillus thuringiensis israelensis (Bti) or insect growth regulators (e.g., methoprene), are commonly used to control mosquitoes in these habitats. However, it is unknown how commonly used control compounds affect the mosquito internal microbiome and potentially alter their life history traits. The objectives of this study were threefold: characterize the internal microbiota of Aedes larvae (Culicidae) in ephemeral forested mosquito habitat using high-throughput amplicon based sequencing, assess how mosquito control treatments affect the internal microbial communities of larval mosquitoes, and determine if changes to the microbiome resulted from direct or indirect treatment effects. The larval microbiome varied in community composition and diversity with development stage and treatment, suggesting potential effects of control compounds on insect microbial ecology. While microbial community differences due to Bti treatment were a result of indirect effects on larval development, methoprene had significant impacts on bacterial and algal taxa that could not be explained by indirect treatment effects. These results provide new information on the interactions between pesticide treatments and insect microbial communities.


Assuntos
Aedes/efeitos dos fármacos , Bactérias/isolamento & purificação , Inseticidas/farmacologia , Larva/microbiologia , Microbiota/efeitos dos fármacos , Aedes/crescimento & desenvolvimento , Aedes/microbiologia , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Tempestades Ciclônicas , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Controle de Mosquitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...