Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Plant Biol (Stuttg) ; 23(5): 728-734, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33950548

RESUMO

Most Asteraceae species are pollinated by insects, mainly bees and butterflies, although pollination by birds has been documented and pollination by bats has been suggested for some species. Here, we investigated the pollination of Gongylolepis martiana, a species supposedly pollinated by bats. We assessed floral traits and visitors in a population of G. martiana in the Brazilian Amazon, measuring pollen removal from anthers and deposition on stigmas by diurnal and nocturnal visitors. Florets opened at dusk and lasted for 4 days, with the male phase starting on the first night and the female phase on the third night. Accumulated nectar per capitulum was 69.6 µl per night and sugar concentration was 15%. Nectar-feeding bats and hummingbirds contacted the sexual parts, but pollen removal and deposition were greater throughout the night than during the day, when Meliponini bees considerably reduced pollen availability. Other nocturnal visitors of G. martiana were rare, including nocturnal bees and moths that foraged for pollen and nectar, respectively. Our results support that nectarivorous bats are the main pollinators of G. martiana, confirming Vogel's hypothesis of bat pollination in Asteraceae, particularly in the genus Gongylolepis. Since anthesis and each sexual floral phase started in the evening, nectarivorous bats and diurnal bees caused additive priority effects, preventing hummingbirds from being efficient pollinators. The high density of flowering individuals of G. martiana in patches from white-sand forests likely increases bat attraction, while the small amount of nectar per plant favours cross-pollination.


Assuntos
Asteraceae , Borboletas , Quirópteros , Animais , Abelhas , Flores , Polinização
3.
Plant Biol (Stuttg) ; 22(4): 583-590, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32112502

RESUMO

The tropical Melastomataceae are characterized by poricidal anthers which constitute a floral filter selecting for buzz-pollinating bees. Stamens are often dimorphic, sometimes with discernible feeding and pollinating functions. Rhynchanthera grandiflora produces nectarless flowers with four short stamens and one long stamen; all anthers feature a narrow elongation with an upwards facing pore. We tested pollen transfer by diverse foraging bees and viability of pollen from both stamen types. The impact of anther morphology on pollen release direction and scattering angle was studied to determine the plant's reproductive strategy. Medium-sized to large bees sonicated flowers in a specific position, and the probability of pollen transfer correlated with bee size even among these legitimate visitors. Small bees acted as pollen thieves or robbers. Anther rostrum and pore morphology serve to direct and focus the pollen jet released by floral sonication towards the pollinator's body. Resulting from the ventral and dorsal positioning of the short and long stamens, respectively, the pollinator's body was widely covered with pollen. This improves the plant's chances of outcrossing, irrespective of which bee body part contacts the stigma. Consequently, R. grandiflora is also able to employ bee species of various sizes as pollen vectors. The strategy of spreading pollen all over the pollinator's body is rather cost-intensive but counterbalanced by ensuring that most of the released pollen is in fact transferred to the bee. Thus, flowers of R. grandiflora illustrate how specialized morphology may serve to improve pollination by a functional group of pollinators.


Assuntos
Abelhas , Melastomataceae , Polinização , Animais , Abelhas/anatomia & histologia , Abelhas/classificação , Biodiversidade , Flores/anatomia & histologia , Melastomataceae/anatomia & histologia , Pólen , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...