Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30525031

RESUMO

Robust devices for chronic neural stimulation demand electrode materials which exhibit high charge injection (Q inj) capacity and long-term stability. Boron-doped diamond (BDD) electrodes have shown promise for neural stimulation applications, but their practical applications remain limited due to the poor charge transfer capability of diamond. In this work, we present an attractive approach to produce BDD electrodes with exceptionally high surface area using porous titanium nitride (TiN) as interlayer template. The TiN deposition parameters were systematically varied to fabricate a range of porous electrodes, which were subsequently coated by a BDD thin-film. The electrodes were investigated by surface analysis methods and electrochemical techniques before and after BDD deposition. Cyclic voltammetry (CV) measurements showed a wide potential window in saline solution (between -1.3 and 1.2 V vs. Ag/AgCl). Electrodes with the highest thickness and porosity exhibited the lowest impedance magnitude and a charge storage capacity (CSC) of 253 mC/cm2, which largely exceeds the values previously reported for porous BDD electrodes. Electrodes with relatively thinner and less porous coatings displayed the highest pulsing capacitances (C pulse), which would be more favorable for stimulation applications. Although BDD/TiN electrodes displayed a higher impedance magnitude and a lower C pulse as compared to the bare TiN electrodes, the wider potential window likely allows for higher Q inj without reaching unsafe potentials. The remarkable reduction in the impedance and improvement in the charge transfer capacity, together with the known properties of BDD films, makes this type of coating as an ideal candidate for development of reliable devices for chronic neural interfacing.

2.
Med Eng Phys ; 38(5): 468-76, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26997562

RESUMO

The aim of this study was to investigate how the electrochemical properties of porous titanium nitride stimulation electrode are affected by fibrous encapsulation in vivo. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry and voltage transient (VT) measurements were performed in vivo and in phosphate buffered saline, where the encapsulation process is absent. EIS was used as a non-invasive measurement to follow the inflammation, healing and encapsulation process. EIS showed that the healing and encapsulation process lasted 3-4 weeks. The VTs increased during the first 3-4 weeks, after which they stabilized. The charge storage capacity (CSC) decreased most during the first 3-4 weeks. The increasing VTs and decreasing CSC during the first 3-4 weeks after implantation of the in vivo electrodes seem related to healing and fibrous encapsulation. It is suggested that the charge injection pathway during the encapsulation process changes, which implies that charge injection limits are underestimated with conventional methods.


Assuntos
Titânio/química , Cápsulas , Eletroquímica , Eletrodos , Fosfatos/química
3.
Front Neurosci ; 9: 268, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26300717

RESUMO

The in vivo electrochemical behavior of titanium nitride (TiN) nerve stimulation electrodes was compared to their in vitro behavior for a period of 90 days. Ten electrodes were implanted in two Göttingen minipigs. Four of these were used for electrical stimulation and electrochemical measurements. Five electrodes were kept in Ringer's solution at 37.5°C, of which four were used for electrical stimulation and electrochemical measurements. The voltage transients measured in vivo were 13 times greater than in vitro at implantation and they continued to increase with time. The electrochemical properties in vivo and the tissue resistance (Rtissue) followed a similar trend with time. There was no consistent significant difference between the electrochemical properties of the in vivo and in vitro electrodes after the implanted period. The differences between the in vivo and in vitro electrodes during the implanted period show that the evaluation of electrochemical performance of implantable stimulation electrodes cannot be substituted with in vitro measurements. After the implanted period, however, the performance of the in vivo and in vitro electrodes in saline was similar. In addition, the changes observed over time during the post-implantation period regarding the electrochemical properties of the in vivo electrodes and Rtissue were similar, which indicates that these changes are due to the foreign body response to implantation.

4.
J Chem Phys ; 131(9): 095103, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19739875

RESUMO

We have characterized the polymer physics of single-stranded DNA (ssDNA) using atomic force microscopy. The persistence length l(p) of circular ssDNA adsorbed on a modified graphite surface was determined independently of secondary structure. At a very low ionic strength we obtained l(p)=9.1 nm from the bond correlation function. Increasing the salt concentration lead to a decrease in l(p); at 1 mM NaCl we found l(p)=6.7 nm, while at 10 mM NaCl a value l(p)=4.6 nm was obtained. The persistence length was also extracted from the root-mean-square end-to-end distance and the end-to-end distance distribution function. Finally, we have investigated the scaling behavior using the two latter quantities, and found that on long length scales ssDNA behaves as a two-dimensional self-avoiding walk.


Assuntos
DNA de Cadeia Simples/química , DNA/química , Grafite/química , Microscopia de Força Atômica/métodos , Simulação por Computador , Análise Multivariada , Conformação de Ácido Nucleico , Sais
5.
Phys Rev Lett ; 101(14): 148103, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18851579

RESUMO

The conformation of circular DNA molecules of various lengths adsorbed in a 2D conformation on a mica surface is studied. The results confirm the conjecture that the critical exponent nu is topologically invariant and equal to the self-avoiding walk value (in the present case nu=3/4), and that the topology and dimensionality of the system strongly influence the crossover between the rigid regime and the self-avoiding regime at a scale L approximately 7l{p}. Additionally, the bond correlation function scales with the molecular length L as predicted. For molecular lengths L

Assuntos
DNA Circular/química , Adsorção , Silicatos de Alumínio/química , Microscopia de Força Atômica , Modelos Químicos , Conformação de Ácido Nucleico , Plasmídeos/química
6.
J Phys Chem B ; 112(28): 8241-9, 2008 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-18564871

RESUMO

The complex mechanisms of protein adsorption at the solid-liquid interface is of great importance in many research areas, including protein purification, biocompatibility of medical implants, biosensing, and biofouling. The protein adsorption process depends crucially on both the nanoscale chemistry and topography of the interface. Here, we investigate the adsorption of the cell-binding protein fibronectin on flat and nanometer scale rough tantalum oxide surfaces using ellipsometry and quartz crystal microbalance with dissipation (QCM-D). On the flat tantalum oxide surfaces, the interfacial protein spreading causes an increase in the rigidity and a decrease in the thickness of the adsorbed fibronectin layer with decreasing bulk protein concentration. For the tantalum oxide surfaces with well-controlled, stochastic nanometer scale roughness, similar concentration effects are observed for the rigidity of the fibronectin layer and saturated fibronectin uptake. However, we find that the nanorough tantalum oxide surfaces promote additional protein conformational changes, an effect especially apparent from the QCM-D signals, interpreted as an additional stiffening of the formed fibronectin layers.


Assuntos
Fibronectinas/química , Nanoestruturas/química , Tantálio/química , Adsorção , Anticorpos/imunologia , Cristalização , Fibronectinas/imunologia , Fibronectinas/ultraestrutura , Humanos , Microscopia de Força Atômica , Nanoestruturas/ultraestrutura , Óxidos/química , Propriedades de Superfície
7.
J Phys Chem B ; 112(24): 7267-72, 2008 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-18503271

RESUMO

To generate rough surfaces in Monte Carlo simulations, we use the 2 + 1 solid-on-solid model of deposition with rapid transient diffusion of newly arrived atoms supplied at glancing angle. The surfaces generated are employed to scrutinize the effect of surface roughness on adsorption of globular and anisotropic rodlike proteins. The obtained results are compared with the available experimental data for Ta deposition at glancing angle and for the bovine serum albumin and fibrinogen uptake on the corresponding Ta films.


Assuntos
Simulação por Computador , Método de Monte Carlo , Proteínas/química , Adsorção , Algoritmos , Difusão , Fibrinogênio/química , Modelos Químicos , Soroalbumina Bovina/química , Propriedades de Superfície , Tantálio/química
8.
J Colloid Interface Sci ; 320(1): 110-6, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18201712

RESUMO

The adsorption of fibronectin on gold, Ti-, and Ta-oxide surfaces is investigated by means of the quartz crystal microbalance with dissipation (QCM-D) technique. The surface chemistry (gold, Ti-, and Ta-oxide) is found to influence the frequency shift observed during adsorption of the fibronectin layer with the magnitude being Delta f Au>Delta f Ti-oxide approximately Delta f Ta-oxide. Corresponding variations in the dissipation change normalised to frequency change (Delta D/Delta f) for the layer are observed. The QCM-D data are further analyzed by the random sequential adsorption (RSA) model, and adsorption rate parameter ka and footprint (a) determined, which supported the trend seen in the Delta f and Delta D/Delta f values. The value of ka found by the RSA modelling of the QCM-D resonance frequency data is found to match the ratio between the mass measured by QCM-D and the mass reported by optical techniques in literature. We conclude that comparison of the adsorption rate parameter (ka) obtained by RSA modelling of the QCM-D data with ka values obtained from RSA modelling of data obtained using optical techniques can be a route to determine the degree of hydration of the adsorbed protein layer.


Assuntos
Fibronectinas/química , Ouro/química , Óxidos/química , Tantálio/química , Titânio/química , Adsorção , Humanos , Quartzo/química , Propriedades de Superfície
9.
Nanotechnology ; 19(38): 384016, 2008 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-21832575

RESUMO

We study the behavior of single-stranded DNA (ssDNA) in the presence of well-known drugs with either an intercalating binding mode, such as daunorubicin, actinomycin D, and chloroquine, or a minor groove binding mode, such as netropsin and berenil, by atomic force microscopy (AFM). At very low salt conditions, ssDNA molecules adopt an unstructured conformation without secondary structures. We observe that under these conditions additions of drugs that bind to double-stranded DNA (dsDNA) promote the formation of secondary structures in ssDNA. Furthermore, with an increase of concentration of the drugs, the extension as well as the thermal stabilization of these hairpins was observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...