Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(6): e2311738121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38300859

RESUMO

It is generally accepted that aragonite crystals of biogenic origin are characterized by significantly higher twin densities compared to samples formed during geological processes. Based on our single crystal X-ray diffraction (SCXRD) and transmission electron microscopy (TEM) study of aragonite crystals from various localities, we show that in geological aragonites, the twin densities are comparable to those of the samples from crossed lamellar zones of molluscs shells. The high twin density is consistent with performed calculations, according to which the Gibbs free energy of twin-free aragonite is close to that of periodically twinned aragonite structure. In some cases, high twin densities result in the appearance of diffuse scattering in SCXRD patterns. The obtained TEM and optical micrographs show that besides the twin boundaries (TBs) of growth origin, there are also TBs and especially stacking faults that were likely formed as the result of local strain compensation. SCXRD patterns of the samples from Tazouta, in addition to diffuse scattering lines, show Debye arcs in the [Formula: see text] plane. These Debye arcs are present only on one side of the Bragg reflections and have an azimuthal extent of nearly 30°, making the whole symmetry of the diffraction pattern distinctly chiral, which has not yet been reported for aragonite. By analogy with biogenic calcite crystals, we associate these arcs with the presence of misoriented subgrains formed as a result of crystal twisting during growth.

2.
Nanoscale ; 16(4): 2012-2021, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38194258

RESUMO

The formation of aragonite under ambient conditions is typically linked to Mg-rich aqueous environments. The grains that form in such environments show peculiar properties such as aggregate-like appearance and mesocrystalline character. We tested the effect of dissolved Mg2+ ions on the formation of aragonite mesocrystals by synthesizing aragonite with an automatic titrator at constant pH and at different dissolved Mg : Ca ratios, and by studying the properties of the precipitated material with various scanning transmission electron microscopy (STEM) techniques. At all studied Mg : Ca ratios the firstly condensed carbonate phase was Mg-bearing amorphous calcium carbonate (Mg-ACC) that transformed into aragonite during the synthesis experiments. The aragonite grains had typically aggregate-like appearance and spindle shapes, with the external morphologies of the spindles unaffected by variation in solution chemistry. The alignment of the nanocrystals within the aggregates was crystallographically highly coherent, the [001] directions of nanocrystals showing only a small misorientation with respect to one another; however, both parallel and twin assembly of neighbouring crystals occurred. An increase in the dissolved Mg concentration decreased the crystallographic coherence between the aragonite nanocrystals, suggesting an important role of Mg2+ ions in the assembly of aragonite spindles. Whereas the mesoscale-ordered arrangement of nanocrystals implies a particle-mediated assembly, the observed differences in particle size and composition between the amorphous precursor and the crystalline end-product suggest that the crystallization includes at least partial dissolution and re-precipitation. These findings provide insight into the formation of aragonite and could contribute to the understanding of important aspects of the formation of mesocrystals and hierarchically structured biogenic minerals.

3.
Adv Mater ; 36(4): e2308027, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935053

RESUMO

Water interaction with mineral surfaces is a complex living system decisive for any photocatalytic process. Resolving the atomistic structure of mineral-water interfaces is thus crucial for understanding these processes. Fibrous rutile TiO2 , grown hydrothermally on twinned rutile seeds under acidic conditions, is studied in terms of interface translation, atomic structure, and surface chemistry in the presence of water, by means of advanced microscopy and spectroscopy methods combined with structure modeling and density functional theory calculations. It is shown that fibers while staying in stable separation during their growth, adopt a special crystallographic registry that is controlled by repulsion forces between fully hydroxylated and protonated (110) surfaces. During relaxation, a turbulent proton transfer and cracking of O─H bonds is observed, generating a strong acidic character via proton jump from bridge ─OHb to terminal ─OHt groups, and spontaneous dissociation of interfacial water via a transient protonation of the ─OHt groups. It is shown, that this specific interface structure can be implemented to induce acidic response in an initially neutral medium when re-immersed. This is thought to be the first demonstration of quantum-confined mineral-water interface, capable of memorizing its past and conveying its structurally encoded properties into a new environment.

4.
Molecules ; 28(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36838741

RESUMO

Developing highly efficient semiconductor metal oxide (SMOX) sensors capable of accurate and fast responses to environmental humidity is still a challenging task. In addition to a not so pronounced sensitivity to relative humidity change, most of the SMOXs cannot meet the criteria of real-time humidity sensing due to their long response/recovery time. The way to tackle this problem is to control adsorption/desorption processes, i.e., water-vapor molecular dynamics, over the sensor's active layer through the powder and pore morphology design. With this in mind, a KIT-5-mediated synthesis was used to achieve mesoporous tin (IV) oxide replica (SnO2-R) with controlled pore size and ordering through template inversion and compared with a sol-gel synthesized powder (SnO2-SG). Unlike SnO2-SG, SnO2-R possessed a high specific surface area and quite an open pore structure, similar to the KIT-5, as observed by TEM, BET and SWAXS analyses. According to TEM, SnO2-R consisted of fine-grained globular particles and some percent of exaggerated, grown twinned crystals. The distinctive morphology of the SnO2-R-based sensor, with its specific pore structure and an increased number of oxygen-related defects associated with the powder preparation process and detected at the sensor surface by XPS analysis, contributed to excellent humidity sensing performances at room temperature, comprised of a low hysteresis error (3.7%), sensitivity of 406.8 kΩ/RH% and swift response/recovery speed (4 s/6 s).


Assuntos
Óxidos , Umidade , Pós , Óxidos/química
5.
ACS Appl Mater Interfaces ; 10(7): 6415-6423, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29359559

RESUMO

In/ZnO bulk compounds have been synthesized using a simple solid-state process. In this study, both the structural features and thermoelectric properties of the Zn1-xInxO series with ultralow indium content (0 ≤ x ≤ 0.02) have been studied. High-angle annular dark-field scanning transmission electron microscopy analyses highlight that indium has the ability to create multiple basal plane and pyramidal defects that produce ZnO domains with inverted polarity starting from dopant concentrations as low as 0.25 atom %. Interestingly, the formation of parallel inversion boundaries consisting of InO6 octahedra in the ZnO4 tetrahedra matrix is responsible for phonon scattering while increasing electrical conductivity, thereby enhancing the thermoelectric properties. This effect of multiple extended two-dimensional defects on the thermoelectric properties of ZnO is reported for the first time with such low indium doping. On the chemistry side, the present results point toward a lack of In solubility in the ZnO structure. Moreover, this study is a step forward to the synthesis of other thermoelectric compounds where dopant-induced planar defects in bulk transition metal compounds have the potential to enhance both phonon scattering and electronic conductivity.

6.
Inorg Chem ; 56(1): 480-487, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27991782

RESUMO

We investigated the high-temperature thermoelectric properties of Ga:ZnO bulk compounds, synthesized using a simple and scalable solid-state process. The effects of a low gallium content (x ≤ 0.04 in Zn1-xGaxO1+x/2) on the structural features and electrical/thermal properties are reviewed. Transmission electron microscopy analyses showed that 2D, nonperiodic defects had formed from a doping content as low as x = 0.01 Ga. The structural description of these nanoscale interfaces is, for the first time, carefully investigated in such low-Ga-content samples by HAADF-STEM analyses combined with structural modeling. It was found that the formation of head-to-head inversion twin (h-IT) boundaries and tail-to tail inversion boundaries (t-IB) in the bulk compounds is responsible for strong phonon scattering, while maintaining relatively good electrical conductivity and thereby enhancing the thermoelectric properties. The absolute value of the Seebeck coefficient decreases abruptly from 475 µV/K for x = 0 down to 60 µV/K for x = 0.005 at 350 K. At the same time, the electrical resistivity drops from 1 ohm cm for x = 0 to 1.7 × 10-3 ohm cm for x = 0.005. For higher Ga additions (x > 0.01), the increase in electrical resistivity is likely linked to the formation of interface defects at a larger extent in the wurtzite structure. The thermal conductivity also drops sharply with the increase in the Ga content from ∼33 W/m K for x = 0 to ∼8 for x = 0.04 at 350 K. This study is progress toward the synthesis of other thermoelectric materials where nanoscale interfaces in bulk compounds provide tremendous opportunities for further enhancing both the phonon scattering and the overall figure of merit.

7.
Sci Rep ; 6: 24216, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-27063110

RESUMO

Recent breakthrough of novel hierarchic materials, orchestrated through oriented attachment of crystal subunits, opened questions on what is the mechanism of their self-assembly. Using rutile-type TiO2, synthesized by hydrothermal reaction of Ti(IV)-butoxide in highly acidic aqueous medium, we uncovered the key processes controlling this nonclassical crystallization process. Formation of complex branched mesocrystals of rutile is accomplished by oriented assembly of precipitated fibers along the two low-energy planes, i.e. {110} and {101}, resulting in lateral attachment and twinning. Phase analysis of amorphous material enclosed in pockets between imperfectly assembled rutile fibers clearly shows harmonic ordering resembling that of the adjacent rutile structure. To our understanding this may be the first experimental evidence indicating the presence of electromagnetic force-fields that convey critical structural information through which oriented attachment of nanocrystals is made possible.

8.
Phys Chem Chem Phys ; 16(27): 13610-5, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24777064

RESUMO

In this study the performance enhancement effect of structural ordering for the oxygen reduction reaction (ORR) is systematically studied. Two samples of PtCu3 nanoparticles embedded on a graphitic carbon support are carefully prepared with identical initial composition, particle dispersion and size distribution, yet with different degrees of structural ordering. Thus we can eliminate all coinciding effects and unambiguously relate the improved activity of the ORR and more importantly the enhanced stability to the ordered nanostructure. Interestingly, the electrochemically induced morphological changes are common to both ordered and disordered samples. The observed effect could have a groundbreaking impact on the future directions in the rational design of active and stable platinum alloyed ORR catalysts.

9.
Isotopes Environ Health Stud ; 48(2): 354-71, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22316094

RESUMO

Secondary carbonate precipitates (dripstones) formed on concrete surfaces in four different environments--Mediterranean and continental open-space and indoor environments (inside a building and in a karstic cave)--were studied. The fabric of dripstones depends upon water supply, pH of mother solution and carbonate-resulting precipitation rate. Very low δ(13)C (average-28.2‰) and δ(18)O (average-18.4‰) values showed a strong positive correlation, typical for carbonate precipitated by rapid dissolution of CO(2) in a highly alkaline solution and consequent disequilibrium precipitation of CaCO(3). The main source of carbon is atmospheric or biogenic CO(2) in the poorly ventilated karstic cave, which is reflected in even lower δ(13)C values. Statistical analysis of δ(13)C and δ(18)O values of the four groups of samples showed that the governing factor of isotope fractionation is not the temperature, but rather the precipitation rate.


Assuntos
Carbonatos/química , Clima , Materiais de Construção/análise , Monitoramento Ambiental/métodos , Isótopos de Carbono/análise , Croácia , Fenômenos Geológicos , Região do Mediterrâneo , Isótopos de Oxigênio/análise , Eslovênia
10.
Nanotechnology ; 22(38): 385501, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21865631

RESUMO

In this work, we report on the integration of individual BaTiO(3) nanorods into simple circuit architectures. Polycrystalline BaTiO(3) nanorods were synthesized by electrophoretic deposition (EPD) of barium titanate sol into aluminium oxide (AAO) templates and subsequent annealing. Transmission electron microscopy (TEM) observations revealed the presence of slabs of hexagonal polymorphs intergrown within cubic grains, resulting from the local reducing atmosphere during the thermal treatment. Electrical measurements performed on individual BaTiO(3) nanorods revealed resistivity values between 10 and 100 Ω cm, which is in good agreement with typical values reported in the past for oxygen-deficient barium titanate films. Consequently the presence of oxygen vacancies in their structure was indirectly validated. Some of these nanorods were tested as proof-of-concept humidity sensors. They showed reproducible responses towards different moisture concentrations, demonstrating that individual BaTiO(3) nanorods may be integrated in complex circuit architectures with functional capacities.

11.
Acta Crystallogr C ; 67(Pt 6): i33-5, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21633146

RESUMO

Wulfenite [lead(II) molybdate(VI)] is known as a scheelite structure in the I4(1)/a space group. The structure of the unusual `hemimorphic' wulfenite crystals from the Meǽica mine was refined in the noncentrosymmetric space group I ̅4 using a Pb/Mo exchange disorder model with the approximate composition Pb(0.94)Mo(0.06)[MoO(4)]. Pb atoms in the 2b positions are substituted by Mo at about 12%. The crystal is shown to be twinned by inversion. Hemimorphism may result from the short-range chemical ordering of the metal atoms at the 2b positions.

12.
Nanotechnology ; 21(37): 375605, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20720291

RESUMO

We report on an unusual crystallization phenomenon that results in the self-assembly of sub-micron tubules of crystalline SrTiO(3). The deposition of the tubular structures was done in the pores of anodized aluminum oxide templates by the electrophoretic deposition of SrTiO(3) sols and subsequent annealing. Homogeneous nucleation inside the pores produces a critical number of crystallites leading to their self-organization when the nanocrystals reach sizes that equal the mean free distances between the nuclei. Due to steric constraints the crystals start to organize in order to most efficiently fill the available surface of the pore walls. This process leads to the formation of domains containing a large number of idiomorphic SrTiO(3) nano-cubes that are self-aligned into almost perfect cube-on-cube and cube-to-wall registry, which makes up the walls of the tubules. The described mechanism shows the ability of nanocrystals with well defined morphologies to adapt spatial constraints and self-organize into desired geometries.

13.
Nanotechnology ; 20(27): 275601, 2009 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-19531860

RESUMO

A polyelectrolyte multilayer (PEM) fabricated by the layer-by-layer (LbL) self-assembly of weak polyions of polyacrylic acid (PAA) and polyallylamine (PAH) was applied as a matrix for the in situ nucleation and growth of pure and Mn-doped ZnS nanocrystallites. The nucleation and growth is initiated by the adsorption and binding of the metal ions to the ionized carboxylic groups of the weak polyions within the matrix, followed by the subsequent precipitation of semiconductor nanocrystallites with Na(2)S. Transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis spectroscopy were employed to establish the growth characteristics of the spherical ZnS nanocrystallites in the polyion matrix. The conformational arrangement of polyion chains induced by variation in the assembly pH is the key parameter that affects the structural and morphological characteristics of ZnS nanocrystallites. Repeating the reaction cycle resulted in an increase in the volume density of ZnS nanoparticles and further growth of the initially formed particles by the Ostwald ripening mechanism. The surface passivation of the ZnS nanocrystallites within the polyion matrix enables the enhanced radiative emission of ZnS composite films in the UV range, whereas by doping the ZnS, nanocrystallites show emission characteristic of the manganese ions in the visible region.

14.
Ultramicroscopy ; 103(4): 285-301, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15885433

RESUMO

We have developed a new method for processing distorted high-resolution scanning transmission electron microscopy (STEM) images. The method is based on finding the displaced vertices in the experimental STEM image and warping to geometrically correct reference grid of the object. As a reference grid for warping a structural model obtained using a high-resolution transmission electron microscopy (HRTEM) analysis of the area of interest is utilised. Combined with quantitative HRTEM analysis the IMAGE-WARP method provides a real-space restoration of high-resolution high-angle annular dark-field (HAADF) STEM images without affecting the original Z-contrast information. The method can be applied to extract valuable compositional atomic-column data from any HAADF-STEM image of any kind of bulk crystals with local occupancy or chemistry fluctuations, stacking faults, special grain boundaries or interfaces, for which we have an available structural model. After the warping, distortion-corrected images can be further enhanced using conventional image-filtering techniques, and finally quantified with HAADF-STEM image simulations. The applicability of the IMAGE-WARP method was illustrated using experimental HAADF-STEM images of a strontium titanate crystal disrupted with a Ruddlesden-Popper-type antiphase boundary.

15.
J Electron Microsc (Tokyo) ; 51(6): 383-90, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12630781

RESUMO

A process for retrieving experimental high-resolution high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) images, which are systematically distorted by environmental and/or instrumental instability in addition to the convolution influence of the probe, is demonstrated using a HAADF-STEM image of an antimony-rich basal plane inversion boundary in Sb2O3-doped ZnO ceramics recorded in the [0110] zone axis. The process includes a correction of the diffractogram of the HAADF-STEM image by referring to the diffractogram of a high-resolution transmission electron microscopy image of the same area. The corrected diffractogram is used for deconvolution processing combined with the maximum entropy method. The retrieved images show bright spots regarded as the object function. Thus, the processing of the experimental HAADF-STEM image provides almost a real projected atomic structure by reforming the systematic distortion and eliminating the effects of the probe function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...