Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38961821

RESUMO

Alzheimer's Disease (AD) is the 5th leading cause of death in older adults and treatment options are severely lacking. Recent findings demonstrate a strong relationship between skeletal muscle and cognitive function, with evidence supporting that muscle quality and cognitive function are positively correlated in older adults. Conversely, decreased muscle function is associated with a 3-fold increased risk of cognitive decline. Based on these observations, the purpose of this study was to investigate the negative effects of muscle disuse (via a model of hindlimb immobilization (HLI)) on hippocampal insulin sensitivity and mitochondrial function and identify the potential mechanisms involved. HLI for 10 days in 4-month-old female Wistar rats resulted in the following novel findings: 1) hippocampal insulin resistance and deficits in whole body glucose homeostasis, 2) dramatically increased mitochondrial reactive oxygen species (ROS) production in the hippocampus, 3) elevated markers for amyloidogenic cleavage of APP and tau protein in the hippocampus, 4) and reduced BDNF expression. These findings were associated with global changes in iron homeostasis, with muscle disuse producing muscle iron accumulation in association with decreased serum and whole brain iron levels. We report the novel finding that muscle disuse alters brain iron homeostasis and reveal a strong negative correlation between muscle and brain iron content. Overall, HLI-induced muscle disuse has robust negative effects on hippocampal insulin sensitivity and ROS production in association with altered brain iron homeostasis. This work provides potential novel mechanisms that may help explain how loss of muscle function contributes to cognitive decline and AD risk.

2.
Function (Oxf) ; 5(4)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38984994

RESUMO

While regular physical activity is a cornerstone of health, wellness, and vitality, the impact of endurance exercise training on molecular signaling within and across tissues remains to be delineated. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) was established to characterize molecular networks underlying the adaptive response to exercise. Here, we describe the endurance exercise training studies undertaken by the Preclinical Animal Sites Studies component of MoTrPAC, in which we sought to develop and implement a standardized endurance exercise protocol in a large cohort of rats. To this end, Adult (6-mo) and Aged (18-mo) female (n = 151) and male (n = 143) Fischer 344 rats were subjected to progressive treadmill training (5 d/wk, ∼70%-75% VO2max) for 1, 2, 4, or 8 wk; sedentary rats were studied as the control group. A total of 18 solid tissues, as well as blood, plasma, and feces, were collected to establish a publicly accessible biorepository and for extensive omics-based analyses by MoTrPAC. Treadmill training was highly effective, with robust improvements in skeletal muscle citrate synthase activity in as little as 1-2 wk and improvements in maximum run speed and maximal oxygen uptake by 4-8 wk. For body mass and composition, notable age- and sex-dependent responses were observed. This work in mature, treadmill-trained rats represents the most comprehensive and publicly accessible tissue biorepository, to date, and provides an unprecedented resource for studying temporal-, sex-, and age-specific responses to endurance exercise training in a preclinical rat model.


Assuntos
Adaptação Fisiológica , Envelhecimento , Condicionamento Físico Animal , Ratos Endogâmicos F344 , Animais , Masculino , Feminino , Condicionamento Físico Animal/fisiologia , Adaptação Fisiológica/fisiologia , Ratos , Envelhecimento/fisiologia , Resistência Física/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Treino Aeróbico
3.
J Hepatol ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914313

RESUMO

BACKGROUND & AIMS: Metabolic-dysfunction associated steatohepatitis (MASH) is one of the most common liver diseases worldwide and is characterized by multi-tissue insulin resistance. The effects of a 10-month energy restriction and exercise intervention on liver histology, anthropometrics, plasma biochemistries, and insulin sensitivity were compared to standard of care (control) to understand mechanisms that support liver health improvements. METHODS: Following medical diagnosis of MASH, subjects were randomized to treatment (n=16) or control (n=8). Liver fat (MRS), 18-hour plasma biochemical measurements, and isotopically-labeled hyperinsulinemic-euglycemic clamps were completed pre- and post-intervention. Body composition and cardiorespiratory fitness (VO2peak) were also measured mid-intervention. Treatment subjects were counseled to reduce energy intake and completed supervised, high-intensity interval training (3x/week) for 10 months. Control subjects continued physician-directed care. RESULTS: Treatment induced significant (P<0.05) reductions in body weight, fat mass, and liver injury, while VO2peak (P<0.05) and fatty acid (NEFA) suppression (P=0.06) were improved. Both groups exhibited reductions in total energy intake, HbA1c, hepatic insulin resistance, and liver fat (P<0.05). Compared to control, treatment induced a two-fold increase in peripheral insulin sensitivity which was significantly related to higher VO2peak and resolution of liver disease, despite no group differences in peripheral insulin sensitivity. CONCLUSIONS: Exercise and energy-restriction elicited significant and clinically-meaningful treatment effects on liver health, potentially driven by a redistribution of excess nutrients to skeletal muscle, thereby reducing hepatic nutrient toxicity. Clinical guidelines should emphasize the addition of aerobic exercise in lifestyle treatments for the greatest histologic benefit in individuals with advanced MASH. CLINICAL TRIAL NUMBER: NCT03151798.

4.
Cell Mol Gastroenterol Hepatol ; 18(3): 101365, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797477

RESUMO

BACKGROUND & AIMS: Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is an extracellular matrix regulator with anti-fibrotic effects. However, its expression and role in metabolic dysfunction-associated steatohepatitis (MASH) and hepatic fibrosis are poorly understood. METHODS: We generated a novel transgenic mouse model with RECK overexpression specifically in hepatocytes to investigate its role in Western diet (WD)-induced liver disease. Proteomic analysis and in vitro studies were performed to mechanistically link RECK to hepatic inflammation and fibrosis. RESULTS: Our results show that RECK expression is significantly decreased in liver biopsies from human patients diagnosed with MASH and correlated negatively with severity of metabolic dysfunction-associated steatotic liver disease (MASLD) and fibrosis. Similarly, RECK expression is downregulated in WD-induced MASH in wild-type mice. Hepatocyte-specific RECK overexpression significantly reduced hepatic pathology in WD-induced liver injury. Proteomic analysis highlighted changes in extracellular matrix and cell-signaling proteins. In vitro mechanistic studies linked RECK induction to reduced ADAM10 (a disintegrin and metalloproteinase domain-containing protein 10) and ADAM17 activity, amphiregulin release, epidermal growth factor receptor activation, and stellate cell activation. CONCLUSION: Our in vivo and mechanistic in vitro studies reveal that RECK is a novel upstream regulator of inflammation and fibrosis in the diseased liver, its induction is hepatoprotective, and thus highlights its potential as a novel therapeutic in MASH.

5.
Front Endocrinol (Lausanne) ; 15: 1335855, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800476

RESUMO

Introduction: Emerging data suggests liver disease may be initiated during development when there is high genome plasticity and the molecular pathways supporting liver function are being developed. Methods: Here, we leveraged our Collaborative Cross mouse model of developmental vitamin D deficiency (DVD) to investigate the role of DVD in dysregulating the molecular mechanisms underlying liver disease. We defined the effects on the adult liver transcriptome and metabolome and examined the role of epigenetic dysregulation. Given that the parental origin of the genome (POG) influences response to DVD, we used our established POG model [POG1-(CC011xCC001)F1 and POG2-(CC001xCC011)F1] to identify interindividual differences. Results: We found that DVD altered the adult liver transcriptome, primarily downregulating genes controlling liver development, response to injury/infection (detoxification & inflammation), cholesterol biosynthesis, and energy production. In concordance with these transcriptional changes, we found that DVD decreased liver cell membrane-associated lipids (including cholesterol) and pentose phosphate pathway metabolites. Each POG also exhibited distinct responses. POG1 exhibited almost 2X more differentially expressed genes (DEGs) with effects indicative of increased energy utilization. This included upregulation of lipid and amino acid metabolism genes and increased intermediate lipid and amino acid metabolites, increased energy cofactors, and decreased energy substrates. POG2 exhibited broader downregulation of cholesterol biosynthesis genes with a metabolomics profile indicative of decreased energy utilization. Although DVD primarily caused loss of liver DNA methylation for both POGs, only one epimutation was shared, and POG2 had 6.5X more differentially methylated genes. Differential methylation was detected at DEGs regulating developmental processes such as amino acid transport (POG1) and cell growth & differentiation (e.g., Wnt & cadherin signaling, POG2). Conclusions: These findings implicate a novel role for maternal vitamin D in programming essential offspring liver functions that are dysregulated in liver disease. Importantly, impairment of these processes was not rescued by vitamin D treatment at weaning, suggesting these effects require preventative measures. Substantial differences in POG response to DVD demonstrate that the parental genomic context of exposure determines offspring susceptibility.


Assuntos
Colesterol , Metabolismo Energético , Fígado , Deficiência de Vitamina D , Animais , Camundongos , Fígado/metabolismo , Deficiência de Vitamina D/metabolismo , Deficiência de Vitamina D/genética , Colesterol/metabolismo , Colesterol/biossíntese , Feminino , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Transcriptoma , Epigênese Genética
6.
Cell Metab ; 36(6): 1411-1429.e10, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38701776

RESUMO

Mitochondria have diverse functions critical to whole-body metabolic homeostasis. Endurance training alters mitochondrial activity, but systematic characterization of these adaptations is lacking. Here, the Molecular Transducers of Physical Activity Consortium mapped the temporal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats trained for 1, 2, 4, or 8 weeks. Training elicited substantial changes in the adrenal gland, brown adipose, colon, heart, and skeletal muscle. The colon showed non-linear response dynamics, whereas mitochondrial pathways were downregulated in brown adipose and adrenal tissues. Protein acetylation increased in the liver, with a shift in lipid metabolism, whereas oxidative proteins increased in striated muscles. Exercise-upregulated networks were downregulated in human diabetes and cirrhosis. Knockdown of the central network protein 17-beta-hydroxysteroid dehydrogenase 10 (HSD17B10) elevated oxygen consumption, indicative of metabolic stress. We provide a multi-omic, multi-tissue, temporal atlas of the mitochondrial response to exercise training and identify candidates linked to mitochondrial dysfunction.


Assuntos
Mitocôndrias , Condicionamento Físico Animal , Animais , Masculino , Feminino , Mitocôndrias/metabolismo , Ratos , Músculo Esquelético/metabolismo , Humanos , Ratos Sprague-Dawley , Tecido Adiposo Marrom/metabolismo , Glândulas Suprarrenais/metabolismo , Multiômica
7.
Am J Physiol Endocrinol Metab ; 326(4): E493-E502, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381399

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is characterized by excess lipid accumulation that can progress to inflammation (nonalcoholic steatohepatitis, NASH), and fibrosis. Serum ß-hydroxybutyrate (ß-HB), a product of the ketogenic pathway, is commonly used as a surrogate marker for hepatic fatty acid oxidation (FAO). However, it remains uncertain whether this relationship holds true in the context of NAFLD in humans. We compared fasting serum ß-HB levels with direct measurement of liver mitochondrial palmitate oxidation in humans stratified based on NAFLD severity (n = 142). Patients were stratified based on NAFLD activity score (NAS): NAS = 0 (no disease), NAS = 1-2 (mild), NAS = 3-4 (moderate), and NAS ≥ 5 (advanced). Moderate and advanced NAFLD is associated with reductions in liver 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), serum ß-HB, but not 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL) mRNA, relative to no disease. Worsening liver mitochondrial complete palmitate oxidation corresponded with lower HMGCS2 mRNA but not total (complete + incomplete) palmitate oxidation. Interestingly, we found that liver HMGCS2 mRNA and serum ß-HB correlated with liver mitochondrial ß-hydroxyacyl-CoA dehydrogenase (ß-HAD) activity and CPT1A mRNA. Also, lower mitochondrial mass and markers of mitochondrial turnover positively correlated with lower HMGCS2 in the liver. These data suggest that liver ketogenesis and FAO occur at comparable rates in individuals with NAFLD. Our findings support the utility of serum ß-HB to serve as a marker of liver injury and hepatic FAO in the context of NAFLD.NEW & NOTEWORTHY Serum ß-hydroxybutyrate (ß-HB) is frequently utilized as a surrogate marker for hepatic fatty acid oxidation; however, few studies have investigated this relationship during states of liver disease. We found that the progression of nonalcoholic fatty liver disease (NAFLD) is associated with reductions in circulating ß-HB and liver 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2). As well, decreased rates of hepatic fatty acid oxidation correlated with liver HMGCS2 mRNA and serum ß-HB. Our work supports serum ß-HB as a potential marker for hepatic fatty acid oxidation and liver injury during NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Corpos Cetônicos/metabolismo , Biomarcadores/metabolismo , RNA Mensageiro/metabolismo , Palmitatos/metabolismo
8.
Transl Res ; 267: 67-78, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38262578

RESUMO

Cardiovascular disease and heart failure doubles in patients with chronic kidney disease (CKD), but the underlying mechanisms remain obscure. Mitochondria are central to maintaining cellular respiration and modulating cardiomyocyte function. We took advantage of our novel swine model of CKD and left ventricular diastolic dysfunction (CKD-LVDD) to investigate the expression of mitochondria-related genes and potential mechanisms regulating their expression. CKD-LVDD and normal control pigs (n=6/group, 3 males/3 females) were studied for 14 weeks. Renal and cardiac hemodynamics were quantified by multidetector-CT, echocardiography, and pressure-volume loop studies, respectively. Mitochondrial morphology (electron microscopy) and function (Oroboros) were assessed ex vivo. In randomly selected pigs (n=3/group), cardiac mRNA-, MeDIP-, and miRNA-sequencing (seq) were performed to identify mitochondria-related genes and study their pre- and post -transcriptional regulation. CKD-LVDD exhibited cardiac mitochondrial structural abnormalities and elevated mitochondrial H2O2 emission but preserved mitochondrial function. Cardiac mRNA-seq identified 862 mitochondria-related genes, of which 69 were upregulated and 33 downregulated (fold-change ≥2, false discovery rate≤0.05). Functional analysis showed that upregulated genes were primarily implicated in processes associated with oxidative stress, whereas those downregulated mainly participated in respiration and ATP synthesis. Integrated mRNA/miRNA/MeDIP-seq analysis showed that upregulated genes were modulated predominantly by miRNAs, whereas those downregulated were by miRNA and epigenetic mechanisms. CKD-LVDD alters cardiac expression of mitochondria-related genes, associated with mitochondrial structural damage but preserved respiratory function, possibly reflecting intrinsic compensatory mechanisms. Our findings may guide the development of early interventions at stages of cardiac dysfunction in which mitochondrial injury could be prevented, and the development of LVDD ameliorated.


Assuntos
MicroRNAs , Insuficiência Renal Crônica , Disfunção Ventricular Esquerda , Masculino , Feminino , Humanos , Animais , Suínos , Peróxido de Hidrogênio , Disfunção Ventricular Esquerda/genética , Insuficiência Renal Crônica/complicações , Mitocôndrias/metabolismo , MicroRNAs/genética , RNA Mensageiro
9.
J Nutr ; 153(12): 3418-3429, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37774841

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) prevalence is rapidly growing, and fatty liver has been found in a quarter of the US population. Increased liver lipids, particularly those derived from the pathway of de novo lipogenesis (DNL), have been identified as a hallmark feature in individuals with high liver fat. This has led to much activity in basic science and drug development in this area. No studies to date have investigated the contribution of DNL across a spectrum of disease, although it is clear that inhibition of DNL has been shown to reduce liver fat. OBJECTIVES: The purpose of this study was to determine whether liver lipid synthesis increases across the continuum of liver injury. METHODS: Individuals (n = 49) consumed deuterated water for 10 d before their scheduled bariatric surgeries to label DNL; blood and liver tissue samples were obtained on the day of the surgery. Liver lipid concentrations were quantitated, and levels of protein and gene expression assessed. RESULTS: Increased liver DNL, measured isotopically, was significantly associated with liver fatty acid synthase protein content (R = 0.470, P = 0.003), total steatosis assessed by histology (R = 0.526, P = 0.0008), and the fraction of DNL fatty acids in plasma very low-density lipoprotein-triacylglycerol (R = 0.747, P < 0.001). Regression analysis revealed a parabolic relationship between fractional liver DNL (percent) and NAFLD activity score (R = 0.538, P = 0.0004). CONCLUSION: These data demonstrate that higher DNL is associated with early to mid stages of liver disease, and this pathway may be an effective target for the treatment of NAFLD and nonalcoholic steatohepatitis. This study was registered at clinicaltrials.gov as NCT03683589.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Triglicerídeos/metabolismo , Marcação por Isótopo , Fígado/metabolismo , Ácidos Graxos/metabolismo , Lipogênese
10.
Cell Rep ; 42(8): 113007, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37590139

RESUMO

Immune responses differ between females and males, although such sex-based variance is incompletely understood. Observing that bacteremia of the opportunistic pathogen Burkholderia gladioli caused many more deaths of female than male mice bearing genetic deficiencies in adaptive immunity, we determined that this was associated with sex bias in the innate immune memory response called trained immunity. Female attenuation of trained immunity varies with estrous cycle stage and correlates with serum progesterone, a hormone that decreases glycolytic capacity and recall cytokine secretion induced by antigen non-specific stimuli. Progesterone receptor antagonism rescues female trained immune responses and survival from controlled B. gladioli infection to magnitudes similar to those of males. These data demonstrate progesterone-dependent sex bias in trained immunity where attenuation of female responses is associated with survival outcomes from opportunistic infection.


Assuntos
Infecções Oportunistas , Progesterona , Feminino , Masculino , Animais , Camundongos , Progesterona/farmacologia , Sexismo , Imunidade Treinada , Imunidade Adaptativa
11.
Front Physiol ; 14: 1172675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153214

RESUMO

In vivo methods to estimate human liver mitochondrial activity are lacking and this project's goal was to use a non-invasive breath test to quantify complete mitochondrial fat oxidation and determine how test results changed when liver disease state was altered over time. Patients with suspected non-alcoholic fatty liver disease (NAFLD; 9 men, 16 women, 47 ± 10 years, 113 ± 23 kg) underwent a diagnostic liver biopsy and liver tissue was histologically scored by a pathologist using the NAFLD activity score (0-8). To assess liver oxidation activity, a labeled medium chain fatty acid was consumed orally (23.4 mg 13C4-octanoate) and breath samples collected over 135 min. Total CO2 production rates were measured using breath 13CO2 analysis by isotope ratio mass spectrometry. Fasting endogenous glucose production (EGP) was measured using an IV infusion of 13C6-glucose. At baseline, subjects oxidized 23.4 ± 3.9% (14.9%-31.5%) of the octanoate dose and octanoate oxidation (OctOx) was negatively correlated with fasting plasma glucose (r = -0.474, p = 0.017) and EGP (r = -0.441, p = 0.028). Twenty-two subjects returned for repeat tests 10.2 ± 1.0 months later, following lifestyle treatment or standardized care. OctOx (% dose/kg) was significantly greater across all subjects (p = 0.044), negatively related to reductions in EGP (r = -0.401, p = 0.064), and tended to correlate with reduced fasting glucose (r = -0.371, p = 0.090). Subjects exhibited reductions in steatosis (p = 0.007) which tended to correlate with increased OctOx (% of dose/kg, r = -0.411, p = 0.058). Based on our findings, the use of an 13C-octanoate breath test may be an indicator of hepatic steatosis and glucose metabolism, but these relationships require verification through larger studies in NAFLD populations.

12.
Front Physiol ; 14: 1165224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113697

RESUMO

Objective: The ketone diester, R,S-1,3-butanediol diacetoacetate (BD-AcAc2), attenuates the accretion of adiposity and reduces hepatic steatosis in high-fat diet-induced obese mice when carbohydrate energy is removed from the diet to accommodate energy from the ester. Reducing carbohydrate energy is a potential confounder due to the well-known effects of carbohydrate restriction on components of energy balance and metabolism. Therefore, the current investigation was designed to determine whether the addition of BD-AcAc2 to a high-fat, high-sugar diet (with no reduction in carbohydrate energy) would attenuate the accretion of adiposity and markers of hepatic steatosis and inflammation. Methods: Sixteen 11-week-old male C57BL/6J mice were randomized to one of two groups for 9 weeks (n = 8 per group): 1) Control (CON, HFHS diet) or 2) Ketone ester (KE, HFHS diet + BD-AcAc2, 25% by kcals). Results: Body weight increased by 56% in CON (27.8 ± 2.5 to 43.4 ± 3.7 g, p < 0.001) and by 13% in KE (28.0 ± 0.8 to 31.7 ± 3.1 g, p = 0.001). Non-alcoholic fatty liver disease activity scores (NAS) for hepatic steatosis, inflammation, and ballooning were lower in the KE group compared to CON (p < 0.001 for all). Markers of hepatic inflammation [Tnfα (p = 0.036); Mcp1 (p < 0.001)], macrophage content [(Cd68 (p = 0.012)], and collagen deposition and hepatic stellate cell activation [(αSma (p = 0.004); Col1A1 (p < 0.001)] were significantly lower in the KE group compared to CON. Conclusion: These findings extend those of our previous work and show that BD-AcAc2 attenuates the accretion of adiposity and reduces markers of liver steatosis, inflammation, ballooning, and fibrosis in lean mice placed on a HFHS diet where carbohydrate energy was not removed to accommodate energy from addition of the diester.

13.
JHEP Rep ; 5(5): 100716, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37035456

RESUMO

Background & Aims: Non-alcoholic steatohepatitis (NASH)-induced liver fibrosis is emerging as the most common cause of liver disease. For evaluation of therapies, there is a pressing need to identify non-invasive, mechanism-based biomarkers. A pro-fibrotic process relevant to human NASH involves a pathway in which a transcriptional regulator called TAZ (WWTR1) in hepatocytes induces the secretion of pro-fibrotic Indian hedgehog (IHH). We therefore reasoned that circulating IHH may be a useful mechanism-based marker to assess changes in NASH fibrosis. Methods: Circulating IHH was assessed in wild-type and hepatocyte-TAZ-silenced NASH mice and in three separate cohorts of patients with mild-moderate NASH. Results: Circulating IHH was elevated in mice with diet-induced NASH compared with chow-fed mice or with NASH mice in which hepatocyte TAZ was silenced, which is an effective means to decrease NASH fibrosis. In patients with fatty liver disease with or without NASH, NASH fibrosis was associated with increased concentrations of circulating IHH. Conclusions: The results of these analyses support further investigation to determine whether circulating IHH may be useful as a mechanism-based indicator of target engagement in anticipated future clinical trials testing NASH fibrosis therapies that block the IHH pathway. Impact and implications: Non-alcoholic steatohepatitis (NASH)-induced liver fibrosis is a common cause of liver disease. Circulating biomarkers that reflect liver fibrosis in NASH would be very useful to evaluate therapies. One mechanism of NASH fibrosis with potential as a therapeutic target involves a liver-secreted protein called Indian hedgehog (IHH). We report that circulating levels of IHH in experimental and human NASH associates with NASH and NASH-associated liver fibrosis, providing the premise for further investigation into using circulating IHH to evaluate anticipated future NASH therapies that block the IHH pathway in liver.

14.
J Lipid Res ; 64(5): 100366, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37028768

RESUMO

Ceramides (CERs) are key intermediate sphingolipids implicated in contributing to mitochondrial dysfunction and the development of multiple metabolic conditions. Despite the growing evidence of CER role in disease risk, kinetic methods to measure CER turnover are lacking, particularly using in vivo models. The utility of orally administered 13C3, 15N l-serine, dissolved in drinking water, was tested to quantify CER 18:1/16:0 synthesis in 10-week-old male and female C57Bl/6 mice. To generate isotopic labeling curves, animals consumed either a control diet or high-fat diet (HFD; n = 24/diet) for 2 weeks and varied in the duration of the consumption of serine-labeled water (0, 1, 2, 4, 7, or 12 days; n = 4 animals/day/diet). Unlabeled and labeled hepatic and mitochondrial CERs were quantified using liquid chromatography tandem MS. Total hepatic CER content did not differ between the two diet groups, whereas total mitochondrial CERs increased with HFD feeding (60%, P < 0.001). Within hepatic and mitochondrial pools, HFD induced greater saturated CER concentrations (P < 0.05) and significantly elevated absolute turnover of 16:0 mitochondrial CER (mitochondria: 59%, P < 0.001 vs. liver: 15%, P = 0.256). The data suggest cellular redistribution of CERs because of the HFD. These data demonstrate that a 2-week HFD alters the turnover and content of mitochondrial CERs. Given the growing data on CERs contributing to hepatic mitochondrial dysfunction and the progression of multiple metabolic diseases, this method may now be used to investigate how CER turnover is altered in these conditions.


Assuntos
Ceramidas , Esfingolipídeos , Camundongos , Animais , Masculino , Feminino , Ceramidas/metabolismo , Esfingolipídeos/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , Dieta Hiperlipídica/efeitos adversos
15.
Front Aging Neurosci ; 15: 1147420, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077501

RESUMO

Physical inactivity is the 4th leading cause of death globally and has been shown to significantly increase the risk for developing Alzheimer's Disease (AD). Recent work has demonstrated that exercise prior to breeding produces heritable benefits to the brains of offspring, suggesting that the physical activity status of previous generations could play an important role in one's brain health and their subsequent risk for neurodegenerative diseases. Thus, our study aimed to test the hypothesis that selective breeding for physical inactivity, or for high physical activity, preference produces heritable deficits and enhancements to brain health, respectively. To evaluate this hypothesis, male and female sedentary Low Voluntary Runners (LVR), wild type (WT), and High Voluntary Runner (HVR) rats underwent cognitive behavioral testing, analysis of hippocampal neurogenesis and mitochondrial respiration, and molecular analysis of the dentate gyrus. These analyses revealed that selecting for physical inactivity preference has produced major detriments to cognition, brain mitochondrial respiration, and neurogenesis in female LVR while female HVR display enhancements in brain glucose metabolism and hippocampal size. On the contrary, male LVR and HVR showed very few differences in these parameters relative to WT. Overall, we provide evidence that selective breeding for physical inactivity has a heritable and detrimental effect on brain health and that the female brain appears to be more susceptible to these effects. This emphasizes the importance of remaining physically active as chronic intergenerational physical inactivity likely increases susceptibility to neurodegenerative diseases for both the inactive individual and their offspring.

16.
Semin Liver Dis ; 43(1): 77-88, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36764305

RESUMO

The association between liver and brain health has gained attention as biomarkers of liver function have been revealed to predict neurodegeneration. The liver is a central regulator in metabolic homeostasis. However, in nonalcoholic fatty liver disease (NAFLD), homeostasis is disrupted which can result in extrahepatic organ pathologies. Emerging literature provides insight into the mechanisms behind the liver-brain health axis. These include the increased production of liver-derived factors that promote insulin resistance and loss of neuroprotective factors under conditions of NAFLD that increase insulin resistance in the central nervous system. In addition, elevated proinflammatory cytokines linked to NAFLD negatively impact the blood-brain barrier and increase neuroinflammation. Furthermore, exacerbated dyslipidemia associated with NAFLD and hepatic dysfunction can promote altered brain bioenergetics and oxidative stress. In this review, we summarize the current knowledge of the crosstalk between liver and brain as it relates to the pathophysiology between NAFLD and neurodegeneration, with an emphasis on Alzheimer's disease. We also highlight knowledge gaps and future areas for investigation to strengthen the potential link between NAFLD and neurodegeneration.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Biomarcadores/metabolismo , Citocinas/metabolismo
17.
bioRxiv ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36711881

RESUMO

Mitochondria are adaptable organelles with diverse cellular functions critical to whole-body metabolic homeostasis. While chronic endurance exercise training is known to alter mitochondrial activity, these adaptations have not yet been systematically characterized. Here, the Molecular Transducers of Physical Activity Consortium (MoTrPAC) mapped the longitudinal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats endurance trained for 1, 2, 4 or 8 weeks. Training elicited substantial changes in the adrenal gland, brown adipose, colon, heart and skeletal muscle, while we detected mild responses in the brain, lung, small intestine and testes. The colon response was characterized by non-linear dynamics that resulted in upregulation of mitochondrial function that was more prominent in females. Brown adipose and adrenal tissues were characterized by substantial downregulation of mitochondrial pathways. Training induced a previously unrecognized robust upregulation of mitochondrial protein abundance and acetylation in the liver, and a concomitant shift in lipid metabolism. The striated muscles demonstrated a highly coordinated response to increase oxidative capacity, with the majority of changes occurring in protein abundance and post-translational modifications. We identified exercise upregulated networks that are downregulated in human type 2 diabetes and liver cirrhosis. In both cases HSD17B10, a central dehydrogenase in multiple metabolic pathways and mitochondrial tRNA maturation, was the main hub. In summary, we provide a multi-omic, cross-tissue atlas of the mitochondrial response to training and identify candidates for prevention of disease-associated mitochondrial dysfunction.

18.
Nat Commun ; 14(1): 228, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646715

RESUMO

The interplay between western diet and gut microbiota drives the development of non-alcoholic fatty liver disease and its progression to non-alcoholic steatohepatitis. However, the specific microbial and metabolic mediators contributing to non-alcoholic steatohepatitis remain to be identified. Here, a choline-low high-fat and high-sugar diet, representing a typical western diet, named CL-HFS, successfully induces male mouse non-alcoholic steatohepatitis with some features of the human disease, such as hepatic inflammation, steatosis, and fibrosis. Metataxonomic and metabolomic studies identify Blautia producta and 2-oleoylglycerol as clinically relevant bacterial and metabolic mediators contributing to CL-HFS-induced non-alcoholic steatohepatitis. In vivo studies validate that both Blautia producta and 2-oleoylglycerol promote liver inflammation and hepatic fibrosis in normal diet- or CL-HFS-fed mice. Cellular and molecular studies reveal that the GPR119/TAK1/NF-κB/TGF-ß1 signaling pathway mediates 2-oleoylglycerol-induced macrophage priming and subsequent hepatic stellate cell activation. These findings advance our understanding of non-alcoholic steatohepatitis pathogenesis and provide targets for developing microbiome/metabolite-based therapeutic strategies against non-alcoholic steatohepatitis.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Inflamação/patologia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
19.
Front Mol Neurosci ; 16: 1320879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38163062

RESUMO

Diet-induced obesity is implicated in the development of a variety of neurodegenerative disorders. Concurrently, the loss of mitochondrial Complex I protein or function is emerging as a key phenotype across an array of neurodegenerative disorders. Therefore, the objective of this study was to determine if Western diet (WD) feeding in swine [carbohydrate = 40.8% kCal (17.8% of total calories from high fructose corn syrup), protein = 16.2% kcal, fat = 42.9% kCal, and 2% cholesterol] would result in Complex I syndrome pathology. To characterize the effects of WD-induced obesity on brain mitochondria in swine, high resolution respirometry measurements from isolated brain mitochondria, oxidative phosphorylation Complex expression, and indices of oxidative stress and mitochondrial biogenesis were assessed in female Ossabaw swine fed a WD for 6-months. In line with Complex I syndrome, WD feeding severely reduced State 3 Complex I, State 3 Complex I and II, and uncoupled mitochondrial respiration in the hippocampus and prefrontal cortex (PFC). State 3 Complex I mitochondrial respiration in the PFC inversely correlated with serum total cholesterol. WD feeding also significantly reduced protein expression of oxidative phosphorylation Complexes I-V in the PFC. WD feeding significantly increased markers of antioxidant defense and mitochondrial biogenesis in the hippocampi and PFC. These data suggest WD-induced obesity may contribute to Complex I syndrome pathology by increasing oxidative stress, decreasing oxidative phosphorylation Complex protein expression, and reducing brain mitochondrial respiration. Furthermore, these findings provide mechanistic insight into the clinical link between obesity and mitochondrial Complex I related neurodegenerative disorders.

20.
Front Physiol ; 13: 920675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213237

RESUMO

White adipose tissue (WAT) dysfunction independently predicts cardiometabolic disease, yet there is a lack of effective adipocyte-targeting therapeutics. B3AR agonists enhance adipocyte mitochondrial function and hold potential in this regard. Based on enhanced sensitivity to B3AR-mediated browning in estrogen receptor (ER)alpha-null mice, we hypothesized that ERß may enhance the WAT response to the B3AR ligand, CL316,243 (CL). Methods: Male and female wild-type (WT) and ERß DNA binding domain knock-out (ERßDBDKO) mice fed high-fat diet (HFD) to induce obesity were administered CL (1 mg/kg) daily for 2 weeks. Systemic physiological assessments of body composition (EchoMRI), bioenergetics (metabolic chambers), adipocyte mitochondrial respiration (oroboros) and glucose tolerance were performed, alongside perigonadal (PGAT), subcutaneous (SQAT) and brown adipose tissue (BAT) protein expression assessment (Western blot). Mechanisms were tested in vitro using primary adipocytes isolated from WT mice, and from Esr2-floxed mice in which ERß was knocked down. Statistical analyses were performed using 2 × 2 analysis of variance (ANOVA) for main effects of genotype (G) and treatment (T), as well as GxT interactions; t-tests were used to determine differences between in vitro treatment conditions (SPSS V24). Results: There were no genotype differences in HFD-induced obesity or systemic rescue effects of CL, yet ERßDBDKO females were more sensitive to CL-induced increases in energy expenditure and WAT UCP1 induction (GxT, p < 0.05), which coincided with greater WAT B3AR protein content among the KO (G, p < 0.05). Among males, who were more insulin resistant to begin with (no genotype differences before treatment), tended to be more sensitive to CL-mediated reduction in insulin resistance. With sexes combined, basal WAT mitochondrial respiration trended toward being lower in the ERßDBDKO mice, but this was completely rescued by CL (p < 0.05). Confirming prior work, CL increased adipose tissue ERß protein (T, p < 0.05, all), an effect that was enhanced in WAT and BAT the female KO (GxT, p < 0.01). In vitro experiments indicated that an inhibitor of ERß genomic function (PHTPP) synergized with CL to further increase UCP1 mRNA (p = 0.043), whereas full ERß protein was required for UCP1 expression (p = 0.042). Conclusion: Full ERß activity appears requisite and stimulatory for UCP1 expression via a mechanism involving non-classical ERß signaling. This novel discovery about the role of ERß in adipocyte metabolism may have important clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...