Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(1)2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35012198

RESUMO

Textile reinforced concrete (TRC) has gained attention from the construction industry due to its light weight, high tensile strength, design flexibility, corrosion resistance, and remarkably long service life. Some structural applications that utilize TRC components include precast panels, structural repair, waterproofing elements, and façades. TRC is produced by incorporating textile fabrics into thin cementitious concrete panels. Premature debonding between the textile fabric and concrete due to improper cementitious matrix impregnation of the fibers was identified as a failure-governing mechanism. To overcome this performance limitation, in this study, a novel type of TRC is proposed by replacing the cement binder with a polymer resin to produce textile reinforced polymer concrete (TRPC). The new TRPC is created using a fine-graded aggregate, methyl methacrylate polymer resin, and basalt fiber textile fabric. Four different specimen configurations were manufactured by embedding 0, 1, 2, and 3 textile layers in concrete. Flexural performance was analyzed and compared with reference TRC specimens with similar compressive strength and reinforcement configurations. Furthermore, the crack pattern intensity was determined using an image processing technique to quantify the ductility of TRPC compared with conventional TRC. The new TRPC improved the moment capacity compared with TRC by 51%, 58%, 59%, and 158%, the deflection at peak load by 858%, 857%, 3264%, and 3803%, and the toughness by 1909%, 3844%, 2781%, and 4355% for 0, 1, 2, and 3 textile layers, respectively. TRPC showed significantly improved flexural capacity, superior ductility, and substantial plasticity compared with TRC.

2.
Sensors (Basel) ; 20(21)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114288

RESUMO

Measurement of bridge displacements is important for ensuring the safe operation of railway bridges. Traditionally, contact sensors such as Linear Variable Displacement Transducers (LVDT) and accelerometers have been used to measure the displacement of the railway bridges. However, these sensors need significant effort in installation and maintenance. Therefore, railroad management agencies are interested in new means to measure bridge displacements. This research focuses on mounting Laser Doppler Vibrometer (LDV) on an Unmanned Aerial System (UAS) to enable contact-free transverse dynamic displacement of railroad bridges. Researchers conducted three field tests by flying the Unmanned Aerial Systems Laser Doppler Vibrometer (UAS-LDV) 1.5 m away from the ground and measured the displacement of a moving target at various distances. The accuracy of the UAS-LDV measurements was compared to the Linear Variable Differential Transducer (LVDT) measurements. The results of the three field tests showed that the proposed system could measure non-contact, reference-free dynamic displacement with an average peak and root mean square (RMS) error for the three experiments of 10% and 8% compared to LVDT, respectively. Such errors are acceptable for field measurements in railroads, as the interest prior to bridge monitoring implementation of a new approach is to demonstrate similar success for different flights, as reported in the three results. This study also identified barriers for industrial adoption of this technology and proposed operational development practices for both technical and cost-effective implementation.

3.
J Hand Surg Am ; 43(7): 679.e1-679.e6, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29426604

RESUMO

PURPOSE: "Damage" is an engineering term defining a period between a state of material perfection and the onset of crack initiation. Clinically, it is a loss of fixation due to microstructural breakdown, indirectly measured as a reduction of stiffness of the bone-implant construct, normalized by the cross-sectional area and length of the bone. The purpose of this study was to characterize damage in a cadaver model of extra-articular distal radius fracture with dorsal comminution treated using 2-column volar distal radius plates. METHODS: Ten matched distal radii were randomly divided into 2 groups: group I specimens were treated with a volar distal radius plate with an independent, 2-tiered scaffold design; group II specimens (contralateral limbs) were treated with a volar plate with a single-head design for enhanced ulnar buttressing. Specimens were cyclically loaded to simulate a 6-month postoperative load-bearing period. We report damage after a defined protocol of cyclical loading and load to failure simulating a fall on an outstretched hand. RESULTS: Group II specimens experienced more damage under cyclic loading conditions than group I specimens. Group I specimens were stiffer than group II specimens under load-to-failure conditions. Ultimate force at failure in group I and group II specimens was not different. Specimens failed by plate bending (group I, n = 6/10; group II, n = 2/10) and fracture of the lunate facet (group I, n = 4/10; group II, n = 8/10). CONCLUSIONS: Group I specimens had less screw cutout at the lunate facet than group II specimens under cyclic loading as indicated by lower damage measures and fewer facet fractures during load-to-failure testing. The overall strength of the construct is not affected by plate design. CLINICAL RELEVANCE: Microstructural damage or a loss of fixation due to an overly rigid volar plate design may cause malunion or nonunion of fracture fragments and lead to bone-implant instability.


Assuntos
Placas Ósseas , Fixação Interna de Fraturas/instrumentação , Teste de Materiais , Fraturas do Rádio/cirurgia , Suporte de Carga , Cadáver , Humanos , Desenho de Prótese , Falha de Prótese , Estresse Mecânico
4.
Polymers (Basel) ; 9(3)2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30970775

RESUMO

Glass fiber reinforced polymer (GFRP) composites are widely used in infrastructure applications including water structures due to their relatively high durability, high strength to weight ratio, and non-corrosiveness. Here we demonstrate the potential use of carbon nanoparticles dispersed during GFRP composite fabrication to reduce water absorption of GFRP and to enable monitoring of moisture damage propagation in GFRP composites. GFRP coupons incorporating 2.0 wt % carbon nanofibers (CNFs) and 2.0 wt % multi-wall carbon nanotubes (MWCNTs) were fabricated in order to study the effect of moisture damage on mechanical properties of GFRP. Water absorption tests were carried out by immersing the GFRP coupons in a seawater bath at two temperatures for a time period of three months. Effects of water immersion on the mechanical properties and glass transition temperature of GFRP were investigated. Furthermore, moisture damage in GFRP was monitored by measuring the electrical conductivity of the GFRP coupons. It was shown that carbon nanoparticles can provide a means of self-sensing that enables the monitoring of moisture damage in GFRP. Despite the success of the proposed technique, it might not be able to efficiently describe moisture damage propagation in GFRP beyond a specific threshold because of the relatively high electrical conductivity of seawater. Microstructural investigations using Fourier Transform Infrared (FTIR) explained the significance of seawater immersion time and temperature on the different levels of moisture damage in GFRP.

5.
Nanomaterials (Basel) ; 6(9)2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-28335298

RESUMO

In this work, we report the potential use of novel carbon nanofibers (CNFs), dispersed during fabrication of glass fiber composites to monitor damage propagation under static loading. The use of CNFs enables a transformation of the typically non-conductive glass fiber composites into new fiber composites with appreciable electrical conductivity. The percolation limit of CNFs/epoxy nanocomposites was first quantified. The electromechanical responses of glass fiber composites fabricated using CNFs/epoxy nanocomposite were examined under static tension loads. The experimental observations showed a nonlinear change of electrical conductivity of glass fiber composites incorporating CNFs versus the stress level under static load. Microstructural investigations proved the ability of CNFs to alter the polymer matrix and to produce a new polymer nanocomposite with a connected nanofiber network with improved electrical properties and different mechanical properties compared with the neat epoxy. It is concluded that incorporating CNFs during fabrication of glass fiber composites can provide an innovative means of self-sensing that will allow damage propagation to be monitored in glass fiber composites.

6.
ScientificWorldJournal ; 2014: 242806, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25180197

RESUMO

A numerical method to identify thermal conductivity from time history of one-dimensional temperature variations in thermal unsteady-state is proposed. The numerical method considers the change of specific heat and thermal conductivity with respect to temperature. Fire test of reinforced concrete (RC) columns was conducted using a standard fire to obtain time history of temperature variations in the column section. A thermal equilibrium model in unsteady-state condition was developed. The thermal conductivity of concrete was then determined by optimizing the numerical solution of the model to meet the observed time history of temperature variations. The determined thermal conductivity with respect to temperature was then verified against standard thermal conductivity measurements of concrete bricks. It is concluded that the proposed method can be used to conservatively estimate thermal conductivity of concrete for design purpose. Finally, the thermal radiation properties of concrete for the RC column were estimated from the thermal equilibrium at the surface of the column. The radiant heat transfer ratio of concrete representing absorptivity to emissivity ratio of concrete during fire was evaluated and is suggested as a concrete criterion that can be used in fire safety assessment.


Assuntos
Materiais de Construção/normas , Incêndios , Termodinâmica , Modelos Teóricos
7.
J Hand Surg Am ; 37(4): 699-705, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22386547

RESUMO

PURPOSE: Radial subluxation and cartilage thinning have been associated with initiation and accelerated development of osteoarthritis of the trapeziometacarpal joint. Few investigators have reported on the benefits of opening wedge trapezial osteotomy for altering the contact mechanics of the trapeziometacarpal joint as a possible deterrent to the initiation or progression of osteoarthritis. We used cadaveric specimens to determine whether opening wedge osteotomy of the trapezium was successful in reducing radial subluxation of the metacarpal base and to quantify the contact area and pressure on the trapezial surface during simulated lateral pinch. METHODS: We used 8 fresh-frozen specimens in this study. The flexor pollicis longus, abductor pollicis longus, adductor pollicis, abductor pollicis brevis, and flexor pollicis brevis/opponens pollicis tendons were each loaded to simulate the thumb in lateral pinch position. We measured radial subluxation from anteroposterior radiographs before and after placement of a 15° wedge. We used real-time sensors to analyze contact pressure and contact area distribution on the trapezium. RESULTS: Center of force in the normal joint under lateral pinch loading was primarily located in the dorsal region of the trapezium. After wedge placement, contact pressure increased in the ulnar-dorsal region by 76%. Mean contact area increased in the ulnar-dorsal region from 0.05 to 0.07 cm(2), and in the ulnar-volar region from 0.003 to 0.024 cm(2). The average reduction in joint subluxation was 64%. CONCLUSIONS: The 15° opening wedge osteotomy of the trapezium reduced radial subluxation of the metacarpal on the trapezium and increased contact pressure and contact area away from the diseased compartments of the trapezial surface. Trapezial osteotomy addresses the 2 preeminent theories about the initiation and progression of osteoarthritis. CLINICAL RELEVANCE: By reducing radial subluxation and altering contact pressure and contact area, trapezial osteotomy may prove an alternative to first metacarpal extension osteotomy or ligament reconstruction in early stages of degenerative arthritis of the trapeziometacarpal joint.


Assuntos
Osteoartrite/cirurgia , Osteotomia/métodos , Trapézio/cirurgia , Articulação do Punho , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Osteoartrite/fisiopatologia , Pressão , Rádio (Anatomia)/fisiopatologia , Articulação do Punho/fisiopatologia , Articulação do Punho/cirurgia
8.
Comput Methods Biomech Biomed Engin ; 14(2): 175-82, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21337223

RESUMO

The following is Part B of a two-part study. Part A evaluated, biomechanically, intramedullary (IM) nails versus locking plates for fixation of an extra-articular, metaphyseal wedge fracture in synthetic osteoporotic bone. Part B of this study introduces deterministic finite element (FE) models of each construct type in synthetic osteoporotic bone and investigates the probability of periprosthetic fracture of the locking plate compared with the retrograde IM nail using Monte Carlo simulation. Deterministic FE models of the fractured femur implanted with IM nail and locking plate, respectively, were developed and validated using experimental data presented in Part A of this study. The models were validated by comparing the load-displacement curve of the experimental data with the load-displacement curve of the FE simulation with a root-mean square error of less than 3 mm. The validated FE models were then modified by defining the cortical and cancellous bone modulus of elasticity as uncertain variables that could be assumed to vary randomly. Monte Carlo simulation was used to evaluate the probability of fracture (POF) of each fixation. The POF represents the cumulative probability that the predicted shear stresses in the cortical bone will exceed the expected shear strength of the cortical bone. This investigation provides information regarding the significance of post-operative damage accumulation on the POF of the implanted bones when the two fixations are used. The probabilistic analysis found the locking plate fixation to have a higher POF than the IM nail fixation under the applied loading conditions (locking plate 21.8% versus IM nail 0.019%).


Assuntos
Pinos Ortopédicos , Fraturas do Fêmur/terapia , Prótese de Quadril , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Probabilidade
9.
Comput Methods Biomech Biomed Engin ; 14(2): 157-64, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21337222

RESUMO

The following is a two-part study. Part A evaluates biomechanically intramedullary (IM) nails vs. locking plates for fixation of femoral fractures in osteoporotic bone. Part B of this study introduces a deterministic finite element model of each construct type and investigates the probability of periprosthetic fracture of the locking plate compared with the retrograde IM nail using Monte Carlo simulation. For Part A, an extra-articular, metaphyseal wedge fracture pattern was created in 11 osteoporotic fourth-generation composite femurs. Fixation was performed with a locking plate or a retrograde IM nail. Axial, torsion and bending cyclic loading to simulate post-operative damage accumulation were performed followed by ramped load to failure. Locking plates proved to be more stable (using stiffness as the determining factor) in osteoporotic bone as observed under low load cycle conditions. However, some of these advantages were offset by a greater incidence of sudden periprosthetic fracture observed under ramped loading conditions. Cadaveric, osteoporotic femurs included as a case study also exhibited periprosthetic fracture, but failure was accompanied by catastrophic comminution of the cortex. Periprosthetic failure at the implant end including bone comminution is difficult to salvage with revision fixation. The weakened trabecular matrix and thinned cortex of osteoporotic bone may increase the incidence of periprosthetic fracture. It is, therefore, essential for the surgeon to consider all possible loading scenarios when recommending an ideal implant for the osteoporotic patient.


Assuntos
Pinos Ortopédicos , Fraturas do Fêmur , Prótese de Quadril , Fenômenos Biomecânicos , Cadáver , Humanos , Método de Monte Carlo , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...