Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Indian J Ophthalmol ; 65(6): 518-521, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28643719

RESUMO

Alkaptonuria is a rare inborn error of metabolism with autosomal recessive inheritance with a mutation in homogentisate 1,2-dioxygenase. It results in accumulation of homogentisic acid in connective tissues (ochronosis). Most common ocular manifestations are bluish-black discoloration of the conjunctiva, cornea, and sclera. In this case report, a 39-year-old Indian male patient with additional ocular features in the retina is described.


Assuntos
Alcaptonúria/complicações , Túnica Conjuntiva/patologia , Córnea/patologia , Oftalmopatias/etiologia , Ocronose/complicações , Retina/patologia , Esclera/patologia , Adulto , Alcaptonúria/diagnóstico , Diagnóstico Diferencial , Oftalmopatias/diagnóstico , Humanos , Masculino , Ocronose/diagnóstico , Tomografia de Coerência Óptica/métodos
2.
Steroids ; 119: 18-30, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28089927

RESUMO

Analogs of 1α,25-dihydroxyvitamin D3 (S1) with 20-epi modification (20-epi analogs) possess unique biological properties. We previously reported that 1α,25-dihydroxy-20-epi-vitamin D3 (S2), the basic 20-epi analog is metabolized into less polar metabolites (LPMs) in rat osteosarcoma cells (UMR-106) but not in a perfused rat kidney. Furthermore, we also noted that only selective 20-epi analogs are metabolized into LPMs. For example, 1α,25-dihydroxy-16-ene-20-epi-vitamin D3 (S4), but not 1α,25-dihydroxy-16-ene-23-yne-20-epi-vitamin D3 (S5) is metabolized into LPMs. In spite of these novel findings, the unequivocal identification of LPMs has not been achieved to date. We report here on a thorough investigation of the metabolism of S4 in UMR-106 cells and isolated two major LPMs produced directly from the substrate S4 itself and two minor LPMs produced from 3-epi-S4, a metabolite of S4 produced through C-3 epimerization pathway. Using GC/MS, ESI-MS and 1H NMR analysis, we identified all the four LPMs of S4 as 25-hydroxy-16-ene-20-epi-vitamin D3-1-stearate and 25-hydroxy-16-ene-20-epi-vitamin D3-1-oleate and their respective C-3 epimers. We report here for the first time the elucidation of a novel pathway of metabolism in UMR-106 cells in which both 1α,25(OH)2-16-ene-20-epi-D3 and 1α,25(OH)2-16-ene-20-epi-3-epi-D3 undergo C-1 esterification into stearic and oleic acid esters.


Assuntos
Colecalciferol/metabolismo , Animais , Calcitriol/química , Calcitriol/metabolismo , Linhagem Celular Tumoral , Colecalciferol/química , Ésteres/química , Ésteres/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Osteossarcoma/metabolismo , Ratos , Espectrometria de Massas por Ionização por Electrospray , Estereoisomerismo , Vitamina D/análogos & derivados , Vitamina D/química , Vitamina D/metabolismo
3.
J Steroid Biochem Mol Biol ; 148: 34-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25263656

RESUMO

Three different A-ring perhydroxylated trihydroxyvitamin D3 metabolites were synthesized from their appropriate A-ring precursors and CD-ring for their potential therapeutic applications. We first chemically synthesized 1α,2α,25-trihydroxyvitamin D3 [1α,2α,25(OH)3D3] to study its VDR binding affinity because this metabolite is a product of recombinant human CYP3A4 catalysis when 2α-(3-hydroxypropoxy)-1α,25-dihydroxyvitamin D3 (O2C3), a more potent vitamin D receptor (VDR) binder than 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], is used as the substrate. We found that this metabolite retained 27.3% of the VDR binding affinity compared to 1α,25(OH)2D3. The kcat/Km value of CYP24A1 for 1α,2α,25(OH)3D3 is 60% of that for 1α,25(OH)2D3. Since the biological activity and the metabolic fate of a naturally occurring C4-hydroxylated vitamin D2 metabolite found in the serum of rats treated with pharmacological doses of vitamin D2 have never been described, we next synthesized 1α,4α,25-trihydroxyvitamin D3 and its diastereoisomer, 1α,4ß,25-trihydroxyvitamin D3, to study their metabolism and biological activities. Both 4-hydroxylated isomers showed weaker VDR binding affinity than 1α,25(OH)2D3. Although either 4-hydroxylated isomer can be metabolized by CYP24A1 almost at the same level as 1α,25(OH)2D3, their metabolic patterns catalyzed by uridine 5'-diphosphoglucuronosyltransferase (UGT) are different; only the 4α-hydroxylated analog can be metabolized by UGT to produce a glucuronate conjugate. The results provide important information for the synthesis of new novel chemotherapeutic vitamin D analogs which would be less subjective to degradation and therefore more bioavailable than 1α,25(OH)2D3. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.


Assuntos
Calcitriol/síntese química , Calcitriol/farmacologia , Vitaminas/síntese química , Vitaminas/farmacologia , Animais , Calcitriol/análogos & derivados , Humanos , Estrutura Molecular , Ratos , Estereoisomerismo
4.
J Cell Biochem ; 115(8): 1392-402, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24535953

RESUMO

The potency of 25-hydroxyvitamin D3 (25(OH)D3) is increased by several fold through its metabolism into 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) by cytochrome P450 27B1 (CYP27B1). Thus, the pivotal role of 1α-hydroxylation in the activation of vitamin D compounds is well known. Here, we examined the metabolism of 25-hydroxy-16-ene-23-yne-vitamin D3 (25(OH)-16-ene-23-yne-D3), a synthetic analog of 25(OH)D3 in a cell-free system and demonstrated that 25(OH)-16-ene-23-yne-D3 is neither activated by CYP27B1 nor inactivated by cytochrome P450 24A1 (CYP24A1). These findings were also confirmed in immortalized normal human prostate epithelial cells (PZ-HPV-7) which are known to express both CYP27B1 and CYP24A1, indicating that the structural modifications featured in 25(OH)-16-ene-23-yne-D3 enable the analog to resist the actions of both CYP27B1 and CYP24A1. To provide intelligible structure-function information, we also performed molecular docking analysis between the analog and CYP27B1. Furthermore, 25(OH)-16-ene-23-yne-D3 was found to suppress the growth of PZ-HPV-7 cells with a potency equivalent to 1α,25(OH)2D3. The antiproliferative activity of 25(OH)-16-ene-23-yne-D3 was found to be vitamin D receptor (VDR)-dependent as it failed to inhibit the growth of mammary tumor cells derived from VDR-knockout mice. Furthermore, stable introduction of VDR into VDR-knockout cells restored the growth inhibition by 25(OH)-16-ene-23-yne-D3. Thus, we identified 25-hydroxy-16-ene-23-yne-vitamin D3 as a novel non-1α-hydroxylated vitamin D analog which is equipotent to 1α,25(OH)2D3 in its antiproliferative activity. We now propose that the low potency of the intrinsic VDR-mediated activities of 25(OH)D3 can be augmented to the level of 1α,25(OH)2D3 without its activation through 1α-hydroxylation by CYP27B1, but by simply preventing its inactivation by CYP24A1.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Colecalciferol/análogos & derivados , Neoplasias da Próstata/tratamento farmacológico , Vitamina D3 24-Hidroxilase/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/química , Animais , Catálise , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colecalciferol/administração & dosagem , Colecalciferol/química , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptores de Calcitriol/química , Receptores de Calcitriol/metabolismo , Vitamina D3 24-Hidroxilase/química
5.
J Cell Biochem ; 114(10): 2293-305, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23606409

RESUMO

3-epi-1α,25-dihydroxyvitamin D3 (3-epi-1α,25(OH)2D3), a natural metabolite of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), exhibits potent vitamin D receptor (VDR)-mediated actions such as inhibition of keratinocyte growth or suppression of parathyroid hormone secretion. These VDR-mediated actions of 3-epi-1α,25(OH)2D3 needed an explanation as 3-epi-1α,25(OH)2D3, unlike 1α,25(OH)2D3, exhibits low affinity towards VDR. Metabolic stability of 3-epi-1α,25(OH)2D3 over 1α,25(OH)2D3 has been hypothesized as a possible explanation. To provide further support for this hypothesis, we now performed comparative metabolism studies between 3-epi-1α,25(OH)2D3 and 1α,25(OH)2D3 using both the technique of isolated rat kidney perfusion and purified rat CYP24A1 in a cell-free reconstituted system. For the first time, these studies resulted in the isolation and identification of 3-epi-calcitroic acid as the final inactive metabolite of 3-epi-1α,25(OH)2D3 produced by rat CYP24A1. Furthermore, under identical experimental conditions, it was noted that the amount of 3-epi-calcitroic acid produced from 3-epi-1α,25(OH)2D3 is threefold less than that of calcitroic acid, the analogous final inactive metabolite produced from 1α,25(OH)2D3 . This key observation finally led us to conclude that the rate of overall side-chain oxidation of 3-epi-1α,25(OH)2D3 by rat CYP24A1 leading to its final inactivation is slower than that of 1α,25(OH)2D3. To elucidate the mechanism responsible for this important finding, we performed a molecular docking analysis using the crystal structure of rat CYP24A1. Docking results suggest that 3-epi-1α,25(OH)2D3, unlike 1α,25(OH)2D3, binds to CYP24A1 in an alternate configuration that destabilizes the formation of the enzyme-substrate complex sufficiently to slow the rate at which 3-epi-1α,25(OH)2D3 is inactivated by CYP24A1 through its metabolism into 3-epi-calcitroic acid.


Assuntos
Hidroxicolecalciferóis/metabolismo , Simulação de Dinâmica Molecular , Esteroide Hidroxilases/metabolismo , Vitamina D/análogos & derivados , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Ratos , Vitamina D/metabolismo , Vitamina D3 24-Hidroxilase
6.
Mass Spectrom Rev ; 32(1): 72-86, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22996283

RESUMO

This review highlights the superseding role of mass spectrometry in the structural characterization and quantitation of vitamin D compounds in comparison to other analytical methods (e.g., UV, bioassays) that lack the sensitivity and specificity of mass spectrometry. After a short introduction to the biochemistry of vitamin D compounds, an overview of the current techniques to characterize and quantitate vitamin D compounds is given with emphasis on the contribution of mass spectrometry.


Assuntos
Espectrometria de Massas/métodos , Vitamina D/química , Animais , Cromatografia Líquida/métodos , Cromatografia Líquida/estatística & dados numéricos , Humanos , Vitamina D/análogos & derivados , Vitamina D/metabolismo
7.
Chem Pharm Bull (Tokyo) ; 60(10): 1343-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23036975

RESUMO

A previous report has demonstrated the existence of a C4-hydroxylated vitamin D(2) metabolite in serum of rats treated with pharmacological doses of vitamin D(2). However, the biological significance and metabolic fate of this metabolite have not been described. To explore its potential biological activities, we therefore synthesized 1α,4α,25-trihydroxyvitamin D(3) and its diastereoisomer, 1α,4ß,25-trihydroxyvitamin D(3), using Trost Pd-mediated coupling reaction, and studied their vitamin D receptor (VDR) binding affinity, osteocalcin promoter transactivation activity, and their further metabolism by human CYP24A1 as well as by human liver microsomal fraction based on CYP- and UDP-glucuronosyltransferases (UGTs)-reactions.


Assuntos
Glucuronosiltransferase/metabolismo , Hidroxicolecalciferóis/química , Hidroxicolecalciferóis/farmacologia , Esteroide Hidroxilases/metabolismo , Linhagem Celular , Humanos , Hidroxicolecalciferóis/síntese química , Hidroxicolecalciferóis/metabolismo , Microssomos Hepáticos/metabolismo , Osteocalcina/genética , Receptores de Calcitriol/metabolismo , Ativação Transcricional/efeitos dos fármacos , Vitamina D3 24-Hidroxilase
8.
Arch Biochem Biophys ; 509(1): 33-43, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21338573

RESUMO

We examined the metabolism of two synthetic analogs of 1α,25-dihydroxyvitamin D3 (1), namely 1α,25-dihydroxy-16-ene-23-yne-vitamin D3 (2) and 1α,25-dihydroxy-16-ene-23-yne-26,27-dimethyl-vitamin D3 (4) using rat cytochrome P450 24A1 (CYP24A1) in a reconstituted system. We noted that 2 is metabolized into a single metabolite identified as C26-hydroxy-2 while 4 is metabolized into two metabolites, identified as C26-hydroxy-4 and C26a-hydroxy-4. The structural modification of adding methyl groups to the side chain of 1 as in 4 is also featured in another analog, 1α,25-dihydroxy-22,24-diene-24,26,27-trihomo-vitamin D3 (6). In a previous study, 6 was shown to be metabolized exactly like 4, however, the enzyme responsible for its metabolism was found to be not CYP24A1. To gain a better insight into the structural determinants for substrate recognition of different analogs, we performed an in silico docking analysis using the crystal structure of rat CYP24A1 that had been solved for the substrate-free open form. Whereas analogs 2 and 4 docked similar to 1, 6 showed altered interactions for both the A-ring and side chain, despite prototypical recognition of the CD-ring. These findings hint that CYP24A1 metabolizes selectively different analogs of 1, based on their ability to generate discrete recognition cues required to close the enzyme and trigger the catalytic mechanism.


Assuntos
Esteroide Hidroxilases/metabolismo , Vitamina D/análogos & derivados , Animais , Cromatografia Gasosa-Espectrometria de Massas , Modelos Moleculares , Ligação Proteica , Ratos , Esteroide Hidroxilases/química , Vitamina D/química , Vitamina D/metabolismo , Vitamina D3 24-Hidroxilase
9.
J Med Chem ; 52(8): 2204-13, 2009 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-19309155

RESUMO

1alpha,25(OH)(2)-16-ene-20-cyclopropyl-vitamin D(3) (13) is several fold more potent than the natural hormone 1alpha,25-dihydroxyvitamin D(3) (1) as an anti-inflammatory agent. Here, we have further analyzed the anti-inflammatory properties of 13, confirming it as the most potent analogue tested within this family. We then determined the structures of all the natural metabolites of 13, including the 24-oxo metabolite 14, and carried out its synthesis. A comparison of 13 with 14 showed a similar induction of the primary VDR target genes CYP24A1 and CAMP and comparable anti-inflammatory properties as revealed by a similar inhibition of TNF-alpha, IL-12/23p40, IL-6, and IFN-gamma production. Interestingly, 14 displays a 3-fold lower calcemic activity in vivo compared to 13. Collectively, these findings indicate that the strong potency of 13 can be explained by the accumulation of its stable 24-oxo metabolite, which shows immunoregulatory and anti-inflammatory properties superimposable to those exerted by 13 itself.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Calcitriol/análogos & derivados , Cálcio/sangue , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/genética , Calcitriol/síntese química , Calcitriol/química , Calcitriol/metabolismo , Calcitriol/farmacologia , Catelicidinas , Linhagem Celular Tumoral , Células Cultivadas , Citocinas/antagonistas & inibidores , Humanos , Fatores Imunológicos/síntese química , Fatores Imunológicos/química , Fatores Imunológicos/metabolismo , Fatores Imunológicos/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Ratos , Receptores de Calcitriol/fisiologia , Esteroide Hidroxilases/biossíntese , Esteroide Hidroxilases/genética , Relação Estrutura-Atividade , Vitamina D3 24-Hidroxilase
10.
J Cell Biochem ; 104(5): 1832-42, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18348265

RESUMO

Inducible cyclooxygenase-2 (COX-2) has been implicated to play a role in inflammation and carcinogenesis and selective COX-2 inhibitors have been considered as anti-inflammatory and cancer chemopreventive agents. 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3), the active hormonal form of vitamin D3 also has been considered to be a cancer chemopreventive agent in addition to its important role in maintaining calcium homeostasis. Based on these observations, we studied the direct effect of 1alpha,25(OH)2D3 and one of its less calcemic synthetic analogs, 1alpha,25(OH)2-16-ene-23-yne-D3 on the activity of both COX-1 and COX-2 in an in vitro enzyme assay. Preliminary data indicated that both 1alpha,25(OH)2D3 and 1alpha,25(OH)2-16-ene-23-yne-D3 inhibited selectively the activity of COX-2 with no effect on the activity of COX-1. Out of the two compounds, 1alpha,25(OH)2-16-ene-23-yne-D3 was found to be more effective with an IC50 of 5.8 nM. Therefore, the rest of the experiments were performed using 1alpha,25(OH)2-16-ene-23-yne-D3 only. 1alpha,25(OH)2-16-ene-23-yne-D3 inhibited the proliferation of lipopolysaccharide (LPS) stimulated mouse macrophage cells (RAW 264.7) with a reduction in the expression of COX-2 along with other inflammatory mediators like inducible nitric oxide synthase (iNOS) and interleukin-2 (IL-2). Furthermore, 1alpha,25(OH)2-16-ene-23-yne-D3 also inhibited carrageenan induced inflammation in an air pouch of a rat and effectively reduced the expression of COX-2, iNOS, and IL-2 in the tissues of the same air pouch. In both cases, 1alpha,25(OH)2-16-ene-23-yne-D3 did not show any effect on the expression of COX-1. In summary, our results indicate that 1alpha,25(OH)2-16-ene-23-yne-D3, a less calcemic vitamin D analog, exhibits potent anti-inflammatory effects and is a selective COX-2 inhibitor.


Assuntos
Calcitriol/análogos & derivados , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Vitamina D/análogos & derivados , Vitamina D/farmacologia , Animais , Western Blotting , Calcitriol/farmacologia , Carragenina , Contagem de Células , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Ciclo-Oxigenase 1/metabolismo , Humanos , Inflamação/enzimologia , Concentração Inibidora 50 , Interleucina-2/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Masculino , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Wistar
11.
Arch Biochem Biophys ; 460(2): 254-61, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17196157

RESUMO

It is now well established that 1alpha,25(OH)2D3 is metabolized in its target tissues through the modifications of both side chain and A-ring. The C-24 oxidation pathway is the side chain modification pathway through which 1alpha,25(OH)2D3 is metabolized into calcitroic acid. The C-3 epimerization pathway is the A-ring modification pathway through which 1alpha,25(OH)2D3 is metabolized into 1alpha,25(OH)2-3-epi-D3. During the past two decades, a great number of vitamin D analogs were synthesized by altering the structure of both side chain and A-ring of 1alpha,25(OH)2D3 with the aim to generate novel vitamin D compounds that inhibit proliferation and induce differentiation of various types of normal and cancer cells without causing significant hypercalcemia. Previously, we used some of these analogs as molecular probes to examine how changes in 1alpha,25(OH)2D3 structure would affect its target tissue metabolism. Recently, several nonsteroidal analogs of 1alpha,25(OH)2D3 with unique biological activity profiles were synthesized. Two of the analogs, SL 117 and WU 515 lack the C-ring of the CD-ring skeleton of 1alpha,25(OH)2D3. SL 117 contains the same side chain as that of 1alpha,25(OH)2D3, while WU 515 contains an altered side chain with a 23-yne modification combined with hexafluorination at C-26 and C-27. Presently, it is unknown how the removal of C-ring from the CD-ring skeleton of 1alpha,25(OH)2D3 would affect its target tissue metabolism. In the present study, we compared the metabolic fate of SL 117 and WU 515 with that of 1alpha,25(OH)2D3 in both the isolated perfused rat kidney, which expresses only the C-24 oxidation pathway and rat osteosarcoma cells (UMR 106), which express both the C-24 oxidation and C-3 epimerization pathways. The results of our present study indicate that SL 117 is metabolized like 1alpha,25(OH)2D3, into polar metabolites via the C-24 oxidation pathway in both rat kidney and UMR 106 cells. As expected, WU 515 with altered side chain structure is not metabolized via the C-24 oxidation pathway. Unlike in rat kidney, both SL 117 and WU 515 are also metabolized into less polar metabolites in UMR 106 cells. These metabolites displayed GC and MS characteristics consistent with A-ring epimerization and were putatively assigned as C-3 epimers of SL 117 and WU 515. In summary, we report that removal of the C-ring from the CD-ring skeleton of 1alpha,25(OH)2D3 does not alter its target tissue metabolism significantly.


Assuntos
Calcitriol/análogos & derivados , Calcitriol/farmacocinética , Vitaminas/farmacocinética , Animais , Calcitriol/síntese química , Calcitriol/farmacologia , Proliferação de Células/efeitos dos fármacos , Hipercalcemia/tratamento farmacológico , Hipercalcemia/metabolismo , Rim/metabolismo , Masculino , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley , Vitaminas/síntese química , Vitaminas/farmacologia
12.
Arch Biochem Biophys ; 455(1): 18-30, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17027908

RESUMO

During the past two and half decades the elucidation of the metabolic pathways of 25OHD(3) and its active metabolite 1alpha,25(OH)(2)D(3) progressed in parallel. In spite of many advances in this area of vitamin D research, the unequivocal identification of the end products of 25OHD(3) metabolism through C-24 oxidation pathway has not been achieved. It is now well established that both 25OHD(3) and 1alpha,25(OH)(2)D(3) are metabolized through the same C-24 oxidation pathway initiated by the enzyme 24-hydroxylase (CYP24A1). Based on the information that the end product of 1alpha,25(OH)(2)D(3) metabolism through C-24 oxidation pathway is 1alpha-OH-23- COOH-24,25,26,27-tetranor D(3) or calcitroic acid; the metabolism of 25OHD(3) into 23-COOH-24,25,26,27-tetranor D(3) has been assumed. Furthermore, a previous study indicated 24-COOH-25,26,27-trinor D(3) as a water soluble metabolite of 24R,25(OH)(2)D(3) produced in rat kidney homogenates. Therefore, 24-COOH-25,26,27-trinor D(3) was also assumed as another end product of 25OHD(3) metabolism through C-24 oxidation pathway. We embarked on our present study to provide unequivocal proof for these assumptions. We first studied the metabolism of 25OHD(3) at low substrate concentration (3x10(-10)M) using [1,2-(3)H]25OHD(3) as the substrate in the perfused rat kidneys isolated from both normal and vitamin D(3) intoxicated rats. A highly polar water soluble metabolite, labeled as metabolite X was isolated from the kidney perfusate. The amount of metabolite X produced in the kidney of a vitamin D intoxicated rat was about seven times higher than that produced in the kidney of a normal rat. We then produced metabolite X in a quantity sufficient for its structure identification by perfusing kidneys isolated from vitamin D intoxicated rats with high substrate concentration of 25OHD(3) (5x10(-6)M). Using the techniques of electron impact and thermospray mass spectrometry, we established that the metabolite X contained both 23-COOH-24,25,26,27-tetranor D(3) and 24-COOH-25,26,27-trinor D(3) in a ratio of 4:1. The same metabolite X containing both acids in the same ratio of 4:1 was also produced when 24R,25(OH)(2)D(3) was used as the starting substrate. Previously, the trivial name of cholacalcioic acid was assigned to 24-COOH-25,26,27-trinorvitamin D(3). Using the same guidelines, we now assign the trivial name of calcioic acid to 23-COOH-24,25,26,27-tetranor D(3). In summary, for the first time our study provides unequivocal evidence to indicate that both calcioic and cholacalcioic acids as the end products of 25OHD(3) metabolism in rat kidney through C-24 oxidation pathway.


Assuntos
Vias Biossintéticas , Calcifediol/metabolismo , Hidroxicolecalciferóis/metabolismo , Rim/metabolismo , Animais , Calcifediol/química , Cromatografia Líquida de Alta Pressão , Hidroxicolecalciferóis/química , Técnicas In Vitro , Lipídeos/química , Masculino , Modelos Químicos , Estrutura Molecular , Oxirredução , Perfusão , Ratos , Ratos Sprague-Dawley , Solubilidade , Água/química
13.
Anticancer Res ; 26(4A): 2653-68, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16886676

RESUMO

BACKGROUND: Levels of active vitamin D (VD) are controlled by synthesis via CYP27B1 and self-induced metabolism by CYP24A1. Unbalanced high CYP24A1 expression due to induction by diverse endogenous compounds and xenobiotics, and amplification found in various tumours, might lead to local VD deficiency, thereby causing/reinforcing disorders. MATERIALS AND METHODS: Using primary human keratinocytes, CYP24A1 expression was examined at the mRNA level by dot-blot and Northern blot hybridization, and at the enzyme activity level by analysing HPLC profiles from incubations with 3H-labelled VD metabolites. RESULTS: We have developed a one-step protocol to screen test compounds for potent inhibition of CYP24A1 along with selectivity over CYP27B1 and adequate metabolic stability. These inhibitors amplified hormone levels and, thereby, its function, indicated by increased CYP24A1 expression. Moreover, they stabilized the expression of a CYP24A1 splice variant, possibly serving as a buffer of VD metabolites. In addition, a low abundant, constitutive 24-hydroxylase, active in the low nanomolar range is described. CONCLUSION: Selective CYP24A1 inhibitors could herald a new era for vitamin D research, as well as for therapeutic application. Inhibitors may be used as single entities or in combination with low doses of potent analogs to prevent and treat various defects of growth and differentiation, and neuro-immuno-endocrine disorders.


Assuntos
Inibidores Enzimáticos/farmacologia , Esteroide Hidroxilases/antagonistas & inibidores , Vitamina D/antagonistas & inibidores , Vitamina D/metabolismo , Processamento Alternativo , Animais , Bovinos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Isoenzimas/biossíntese , Isoenzimas/genética , Queratinócitos/efeitos dos fármacos , Queratinócitos/enzimologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Esteroide Hidroxilases/biossíntese , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Vitamina D3 24-Hidroxilase
14.
Curr Top Med Chem ; 6(12): 1289-96, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16848742

RESUMO

The formal C-20 methylation of 1,25-dihydroxy vitamin D3 (calcitriol) and bridging of two methyl groups produces spiro[cyclopropane-1, 20'-calcitriol], colloquially referred to as C-20 cyclopropylcalcitriol, which is much more active in MLR for suppression of interferon-gamma release than calcitriol, and hypercalcemia in mice is elicited at a ten-fold lower dose when compared to calcitriol. Introduction of the Delta16,17-double bond, modification of the side chain by 23-unsaturation and replacement of the methyl groups at C-26 and C-27 with trifluoromethyl moieties create a highly active series of vitamin D analogs. As previously observed in the calcitriol series, the presence of the C-16 double bond in the cyclopropyl analogs also arrests metabolic side-chain oxidation in the at the C-24 oxo level in UMR 106 cells. The enhanced biological activity is ascribed, at least in part, to the improved resistance toward metabolic degradation.


Assuntos
Antineoplásicos/uso terapêutico , Colecalciferol/análogos & derivados , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Colecalciferol/química , Colecalciferol/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais , Neoplasias da Próstata/tratamento farmacológico , Ratos , Relação Estrutura-Atividade
15.
J Clin Endocrinol Metab ; 91(8): 3055-61, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16720650

RESUMO

CONTEXT: We have recently introduced liquid chromatography-tandem mass spectrometry (LC-MS/MS) for 25-hydroxyvitamin D(2) (25OHD(2)) and 25OHD(3) testing. During subsequent clinical use, we identified significantly elevated results in some infants. We hypothesized this might represent assay interference caused by C-3 epimers of 25OHD(2) or 25OHD(3). OBJECTIVE: Our aims were to 1) determine the prevalence of C-3 epimers of 25OHD(2) or 25OHD(3) in human serum, and 2) identify the patient populations that might be affected. STUDY DESIGN: We modified our LC-MS/MS method to allow detection of C-3 epimers. We retested specimens from four patient groups with the new method and an extracted RIA: 1) children less than 1 yr old, 2) children 1-18 yr old, 3) adults aged 20-87 yr with liver disease, and 4) adults aged 19-91 yr without liver disease. RESULTS: In 172 children from group 1 with detectable 25OHD(2) or 25OHD(3), we identified C-3 epimers in 39 (22.7%). The epimers contributed 8.7-61.1% of the total 25-OHD. There was an inverse relationship between patient age and epimer percentage (r = 0.48; P < 0.002). The RIA gave accurate 25-OHD results that correlated with the modified LC-MS/MS method. No C-3 epimers were detected in any of the other groups. CONCLUSIONS: Significant concentrations of C-3 epimers of 25OHD(2) or 25OHD(3) are commonly found in infants. This can lead to overestimation of 25-OHD levels. Measurements in children less than 1 yr should therefore be performed with an assay that allows accurate detection of 25-OHD in the presence of its C-3 epimers.


Assuntos
25-Hidroxivitamina D 2/sangue , 25-Hidroxivitamina D 2/química , Envelhecimento , Calcifediol/sangue , Calcifediol/química , Estado Nutricional , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Lactente , Isomerismo , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Radioimunoensaio , Valores de Referência , Sensibilidade e Especificidade
16.
J Cell Biochem ; 96(3): 569-78, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16088954

RESUMO

Since our original demonstration of the metabolism of 1alpha,25(OH)2D3 into 1alpha,25(OH)2-3-epi-D3 in human keratinocytes, there have been several reports indicating that epimerization of the 3 hydroxyl group of vitamin D compounds is a common metabolic process. Recent studies reported the metabolism of 25OHD3 and 24(R),25(OH)2D3 into their respective C-3 epimers, indicating that the presence of 1alpha hydroxyl group is not necessary for the 3-epimerization of vitamin D compounds. To determine whether the presence of a 25 hydroxyl group is required for 3-epimerization of vitamin D compounds, we investigated the metabolism of 1alphaOHD3, a non-25 hydroxylated vitamin D compound, in rat osteosarcoma cells (ROS 17/2.8). We noted metabolism of 1alphaOHD3 into a less polar metabolite which was unequivocally identified as 1alphaOH-3-epi-D3 using the techniques of HPLC, GC/MS, and 1H-NMR analysis. We also identified 1alphaOH-3-epi-D3 as a circulating metabolite in rats treated with pharmacological concentrations of 1alphaOHD3. Thus, these results indicated that the presence of a 25 hydroxyl group is not required for 3-epimerization of vitamin D compounds. Furthermore, the results from the same studies also provided evidence to indicate that 1alphaOH-3-epi-D3, like 1alphaOHD3, is hydroxylated at C-25. We then evaluated the biological activities of 1alphaOH-3-epi-D3. Treatment of normal rats every other day for 7 days with 2.5 nmol/kg of 1alphaOH-3-epi-D3 did not raise serum calcium, while the same dose of 1alphaOHD3 increased serum calcium by 3.39 +/- 0.52 mg/dl. Interestingly, in the same rats which received 1alphaOH-3-epi-D3 we also noted a reduction in circulating PTH levels by 65 +/- 7%. This ability of 1alphaOH-3-epi-D3 to suppress PTH levels in normal rats without altering serum calcium was further tested in rats with reduced renal function. The results indicated that the ED50 of 1alphaOH-3-epi-D3 for suppression of PTH was only slightly higher than that of 1alpha,25(OH)2D3, but that the threshold dose of the development of hypercalcemia (total serum Ca > 10.5 mg/dl) was nearly 80 times higher. These findings indicate that 1alphaOH-3-epi-D3 is a highly selective vitamin D analog with tremendous potential for treatment of secondary hyperparathyroidism in chronic renal failure patients.


Assuntos
Colecalciferol/análogos & derivados , Colecalciferol/metabolismo , Hormônio Paratireóideo/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Colecalciferol/química , Feminino , Humanos , Masculino , Estrutura Molecular , Osteossarcoma , Ratos , Ratos Sprague-Dawley , Uremia/metabolismo
17.
Arch Biochem Biophys ; 436(1): 196-205, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15752725

RESUMO

Recently, epimerization of the hydroxyl group at C-3 has been identified as a unique metabolic pathway of vitamin D compounds. We measured C-3 epimerization activity in subcellular fractions prepared from cultured cells and investigated the basic properties of the enzyme responsible for the epimerization. C-3 epimerization activity was detected using a NADPH-generating system containing glucose-6-phosphate, NADP, glucose-6-phosphate dehydrogenase, and Mg(2+). The highest level of activity was observed in a microsomal fraction prepared from rat osteoblastic UMR-106 cells but activity was also observed in microsomal fractions prepared from MG-63, Caco-2, Hep G2, and HUH-7 cells. In terms of maximum velocity (V(max)) and the Michaelis constant (K(m)), 25-hydroxyvitamin D(3) [25(OH)D(3)] exhibited the highest specificity for the epimerization at C-3 among 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], 25(OH)D(3), 24,25-dihydroxyvitamin D(3) [24,25(OH)(2)D(3)], and 22-oxacalcitriol (OCT). The epimerization activity was not inhibited by various cytochrome P450 inhibitors and antiserum against NADPH cytochrome P450 reductase. Neither CYP24, CYP27A1, CYP27B1 nor 3(alpha-->beta)hydroxysteroid epimerase (HSE) catalyzed the epimerization in vitro. Based on these results, the enzyme(s) responsible for the epimerization of vitamin D(3) at C-3 are thought to be located in microsomes and different from cytochrome P450 and HSE.


Assuntos
Calcitriol/análogos & derivados , Colecalciferol/metabolismo , Animais , Sequência de Bases , Calcitriol/metabolismo , Cátions Bivalentes , Células Cultivadas , Colecalciferol/análogos & derivados , Sistema Enzimático do Citocromo P-450/metabolismo , Glucose-6-Fosfato/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Concentração de Íons de Hidrogênio , Isomerismo , Magnésio/metabolismo , Microssomos/metabolismo , NADP/metabolismo , Osteoblastos/citologia , Racemases e Epimerases/metabolismo , Ratos , Frações Subcelulares/metabolismo , Especificidade por Substrato , Fatores de Tempo
18.
J Med Chem ; 47(26): 6476-84, 2004 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-15588082

RESUMO

Vitamin D derivatives containing two side chains emanating at C-20 are known as gemini. We have recently synthesized two gemini which are related to calcitriol and 19-norcalcitriol containing two identical side chains. The metabolism of these species involves 24(R)-hydroxylation on one of the side chains. To determine the outcome of this diastereospecific transformation, we synthesized both C-20 epimeric pairs containing the 24(R)-hydroxy group in the gemini and 19-norgemini series. On the basis of the availability of these reference compounds, it was shown that the metabolic hydroxylation occurred at the pro-R side chain in both gemini compounds. In comparison to the parent compounds, the 24-hydroxygemini required higher doses to increase blood calcium levels in mice and to suppress INF-gamma release in MLR.


Assuntos
Calcitriol/análogos & derivados , Calcitriol/síntese química , Animais , Calcitriol/química , Calcitriol/farmacologia , Cálcio/sangue , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Hidroxilação , Interferon gama/antagonistas & inibidores , Camundongos , Ratos , Estereoisomerismo , Relação Estrutura-Atividade
19.
Arch Biochem Biophys ; 431(2): 261-70, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15488475

RESUMO

Recently, 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) has been shown to catalyze not only hydroxylation at C-24 but also hydroxylations at C-23 and C-26 of the secosteroid hormone 1alpha, 25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). It remains to be determined whether CYP24A1 has the ability to hydroxylate vitamin D3 compounds at C-25. 1alpha,24(R)-dihydroxyvitamin D3 (1alpha,24(R)(OH)2D3) is a non-25-hydroxylated synthetic vitamin D3 analog that is presently being used as an antipsoriatic drug. In the present study, we investigated the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes in order to examine the ability of CYP24A1 to hydroxylate 1alpha,24(R)(OH)2D3 at C-25. The results indicated that keratinocytes metabolize 1alpha,24(R)(OH)2D3 into several previously known both 25-hydroxylated and non-25-hydroxylated metabolites along with two new metabolites, namely 1alpha,23,24(OH)3D3 and 1alpha,24(OH)2-23-oxo-D3. Production of the metabolites including the 25-hydroxylated ones was detectable only when CYP24A1 activity was induced in keratinocytes 1alpha,25(OH)2D3. This finding provided indirect evidence to indicate that CYP24A1 catalyzes C-25 hydroxylation of 1alpha,24(R)(OH)2D3. The final proof for this finding was obtained through our metabolism studies using highly purified recombinant rat CYP24A1 in a reconstituted system. Incubation of this system with 1alpha,24(R)(OH)2D3 resulted in the production of both 25-hydroxylated and non-25-hydroxylated metabolites. Thus, in our present study, we identified CYP24A1 as the main enzyme responsible for the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes, and provided unequivocal evidence to indicate that the multicatalytic enzyme CYP24A1 has the ability to hydroxylate 1alpha,24(R)(OH)2D3 at C-25.


Assuntos
Calcifediol/análogos & derivados , Calcifediol/metabolismo , Calcitriol/análogos & derivados , Calcitriol/metabolismo , Queratinócitos/metabolismo , Animais , Catálise , Linhagem Celular , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Meios de Cultura Livres de Soro , Humanos , Hidroxilação , Espectrometria de Massas , Ratos , Proteínas Recombinantes/metabolismo
20.
J Steroid Biochem Mol Biol ; 89-90(1-5): 35-8, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15225743

RESUMO

We previously synthesized calcitriol derivatives with two identical side chains emanating at C-20, also known as gemini. In view of the evidence identifying C-24 hydroxylation as the first step in the in the metabolic cascade of calcitriol and gemini, stereochemical differentiation between the possible epimeric 20R- and 20S side-chain hydroxylated gemini became of interest. We now report the stereoselective synthesis of these compounds. Of these, 1,24(R),25-trihydroxy-21-(3-hydroxy-3-methyl-butyl)-20(R)-19-nor-cholecalciferol was identified as the main metabolic product of 19-nor-gemini. In general, higher doses of the 24-hydroxylated gemini compounds were required to increase blood calcium levels in mice and to suppress INF-gamma release in MLR.


Assuntos
Calcitriol/química , Receptores de Calcitriol/química , Animais , Calcitriol/metabolismo , Camundongos , Sondas Moleculares , Receptores de Calcitriol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...