Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 322: 138146, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36806805

RESUMO

Novel heterostructured hybrid catalysts are essential for the efficient photocatalytic removal of organic pollutants from wastewater generated by the pharmaceutical and textile industries. In this study, novel g-C3N4/BiVO4 nanohybrid catalysts were prepared using a solvothermal technique, and examined their structural and optical properties using different characterizations. The X-ray diffraction analysis confirmed the monoclinic crystal phase of BiVO4. Field emission scanning electron microscopy (FESEM) images revealed that g-C3N4 sheets anchored on the surface of BiVO4 nanospheres. X-ray photoelectron spectroscopy (XPS) analysis confirmed the oxidation states of g-C3N4/BiVO4 composite sample. UV-Vis DRS spectroscopy analysis revealed that the composite (2.08 eV) sample had a reduced bandgap compared to other samples. The photocatalytic properties of the prepared samples were tested in the presence of organic methylene blue (MB) and antibiotic tetracycline (TC) pollutants under visible light illumination. The hybrid composite catalyst exhibited enhanced photocatalytic degradation efficiency of MB (88%) and TC (89%) pollutants at elevated rate constants of 0.0128 and 0.01174 min-1, respectively. The improved catalytic performance of the composite catalyst is due to the heterojunctions between g-C3N4 and BiVO4 that successfully reduced the rate of charge carrier recombination in the catalyst system. Scavenger experiments revealed that O2●- and h+ radicals played a main role in the degradation of the chemical pollutants. The developed g-C3N4/BiVO4 heterostructured catalyst is a suitable candidate for removing contaminants from industrial wastewater because of its facile fabrication and exceptional photocatalytic activity under visible light irradiation.


Assuntos
Poluentes Ambientais , Fotólise , Águas Residuárias , Espectroscopia Fotoeletrônica , Microscopia Eletrônica de Varredura , Luz , Antibacterianos , Tetraciclina
2.
Molecules ; 26(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885842

RESUMO

In this study, the facile synthesis of SnO2 quantum dot (QD)-garnished V2O5 nanobelts exhibiting significantly enhanced reversible capacity and outstanding cyclic stability for Li+ storage was achieved. Electrochemical impedance analysis revealed strong charge transfer kinetics related to that of V2O5 nanobelts. The SnO2 QD-garnished V2O5 nanobelts exhibited the highest discharge capacity of ca. 760 mAhg-1 at a density of 441 mAg-1 between the voltage ranges of 0.0 to 3.0 V, while the pristine V2O5 nanobelts samples recorded a discharge capacity of ca. 403 mAhg-1. The high capacity of QD-garnished nanobelts was achieved as an outcome of their huge surface area of 50.49 m2g-1 and improved electronic conductivity. Therefore, the as-presented SnO2 QD-garnished V2O5 nanobelts synthesis strategy could produce an ideal material for application in high-performance Li-ion batteries.

3.
Chemosphere ; 264(Pt 2): 128593, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33070063

RESUMO

Bulk graphitic carbon nitride (g-C3N4) exhibits limited water splitting efficiency due todrawbacks including high charge recombination rate, low electrical conductivity, poor quantum efficiency, and few adsorption and active catalytic sites. Herein, we report V-doped g-C3N4 nanoarchitectures prepared via direct calcination of urea and ammonium metavanadate. The obtained V-doped g-C3N4 nanostructures not only improved the visible light absorption property but also increased the charge separation and transportation, resulting in extremely enhanced water splitting activity. The structural, morphological, and optical analysis results confirmed the successful incorporation of V into the host g-C3N4 material, and electrochemical impedance spectroscopy measurements revealed the charge carrier dynamics. Compared to the pristine g-C3N4 photoelectrode, the optimized 0.3 mol% V-doped g-C3N4 photoelectrode showed a considerably higher photocurrent density (0.80 mA cm-2). The enhancement of the catalytic performance could be attributed to the synergistic effects of prolonged light absorption, improved transfer of electrons and holes, and extra active catalytic sites for water splitting. Further, the optimized 0.3 mol% V-doped g-C3N4 sample showed an antibacterial activity higher than that of the undoped photocatalyst.


Assuntos
Grafite , Vanádio , Antibacterianos/farmacologia , Compostos de Nitrogênio , Água
4.
J Environ Manage ; 265: 110504, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32275239

RESUMO

Herein we report the fabrication of novel Bi2WO6/ZnO heterostructured hybrids for organic contaminant degradation from wastewater and photoelectrochemical (PEC) water splitting upon solar illumination. The Bi2WO6/ZnO photocatalysts were synthesized using a simple and eco-friendly hydrothermal process without the support of any surfactants. From the photocatalytic experiments, heterostructured Bi2WO6/ZnO nanohybrid catalysts exhibited considerably better photocatalytic performance for rhodamine B (RhB) degradation under solar illumination. The BWZ-20 nanocomposite demonstrated superior photodegradation of RhB dye up to 99% in about 50 min. Furthermore, BWZ-20 photoelectrode showeda lower charge-transfer resistance than other samples prepared, suggesting its suitability for PEC water splitting. The photocurrent densities of Bi2WO6/ZnO photoelectrodes were evaluated under the solar irradiation. The BWZ-20 photoelectrode exhibited a significant photocurrent density (0.45 × 10-3A/cm2) at +0.3 V vs. Ag/AgCl, which was~1036-times higher than that of pure Bi2WO6, and ~4.8-times greater than the pure ZnO. Such improved photocatalytic and PEC activities are mainly attributed to the formation of an interface between ZnO and Bi2WO6, superior light absorption ability, low charge-transfer resistance, remarkable production of charge carriers, easy migration of charges, and suppression of the recombination of photogenerated charge carriers.


Assuntos
Poluentes Ambientais , Óxido de Zinco , Luz , Luz Solar , Água
5.
J Environ Manage ; 260: 110088, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941628

RESUMO

Doping effect on the photoelectrochemical (PEC) water splitting efficiency and photocatalytic activities of ZrO2 under visible light are reported. The XRD analysis revealed that pure, 0.1 and 0.3 mol% doped samples showed mixed crystal phases (tetragonal and monoclinic) and 0.5 mol% doped sample showed a pure tetragonal phase. Under visible light, 90% of methyl orange dye degradation was achieved with in 100 min. Moreover, the optimal doped sample showed a significant degradation rate constant over other samples. The doped photoelectrodes display a better PEC water oxidation performance over pure photoelectrode. Furthermore, the optimal doped (0.3 mol %) electrode shows 0.644 mAcm-2 photocurrent density, corresponding to an approximate 50-fold enhancement over pure electrode (0.013 mAcm-2). The optimized doped sample achieved 98% degradation of methyl orange within 100 min of light irradiation. The superior PEC water oxidation and photocatalytic activity of optimal doped samples under visible light are credited to suitable doping content, crystalline size, greater surface area, suitable bandgap, a lower charge carrying resistance, surface properties and the ability for decreasing the charge carrier's recombination rate.


Assuntos
Poluentes Ambientais , Nanopartículas , Cobre , Titânio , Água
6.
Chemosphere ; 239: 124766, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31527001

RESUMO

Iron (Fe)-doped ZrO2 tetragonal nanoparticles were synthesized by a facile and inexpensive hydrothermal technique, that were doped with Fe3+ ions (0.1, 0.3, and 0.5 mol%) into the host lattice without altering the morphology and crystal structure of the nanoparticles. SEM and TEM investigations indicated that the morphology of ZrO2 nanoparticles did not change even after incorporation of Fe, while the band gap of semiconducting ZrO2 nanoparticles was reduced from 4.97 to 1.77 eV. Such a in band gap was responsible to harvest more photons to stimulate the generation of more electrons in the valence band, thereby enhancing the photoelectrochemical (PEC) water splitting as well as photocatalytic and photoelectrocatalytic activities in the photodegradation of Rhodamine B. The 0.3 mol%-doped ZrO2 electrode showed enhanced photocurrent density (0.07 × 10-3 A/cm2), that was 45-times greater than the pure sample. The electrochemical impedance spectroscopy (EIS) confirmed that 0.3 mol%-doped ZrO2 exhibited the best charge transfer characteristics, which increased with PEC water splitting activity. The maximum photocurrent density and long-term photo-stability were achieved in the light on-off states.


Assuntos
Corantes/isolamento & purificação , Ferro/química , Nanopartículas Metálicas/química , Rodaminas/isolamento & purificação , Zircônio/química , Catálise , Corantes/química , Eletrodos , Poluentes Ambientais/química , Poluentes Ambientais/isolamento & purificação , Fotoquímica/instrumentação , Fotoquímica/métodos , Fotólise , Pontos Quânticos/química , Rodaminas/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...