Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 32306, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27572113

RESUMO

Recently, significant advances have occurred in the development of phosphors for bio hybrid light-emitting diodes (Bio-HLEDs), which have created brighter, metal-free, rare-earth phosphor-free, eco-friendly, and cost-competitive features for visible light emission. Here, we demonstrate an original approach using bioinspired phosphors in Bio-HLEDs based on natural deoxyribonucleic acid (DNA)-curcumin complexes with cetyltrimethylammonium (CTMA) in bio-crystalline form. The curcumin chromophore was bound to the DNA double helix structure as observed using field emission tunnelling electron microscopy (FE-TEM). Efficient luminescence occurred due to tightly bound curcumin chromophore to DNA duplex. Bio-HLED shows low luminous drop rate of 0.0551 s(-1). Moreover, the solid bio-crystals confined the activating bright luminescence with a quantum yield of 62%, thereby overcoming aggregation-induced quenching effect. The results of this study herald the development of commercially viable large-scale hybrid light applications that are environmentally benign.


Assuntos
Curcumina/química , DNA/química , Corantes Fluorescentes/química , Lasers Semicondutores , Luz , Luminescência , Compostos de Cetrimônio/química , Cristalização , Medições Luminescentes/métodos , Microscopia Eletrônica/métodos , Reprodutibilidade dos Testes
2.
Opt Express ; 22(1): 908-15, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24515050

RESUMO

We demonstrated the dual-detectable DNA-CTMA/n-GaN photodiode (DG-PD) for ultraviolet and visible lights. Halogen and UV lamps are employed to recognize the visible and UV wavelength, respectively. The DG-PD under dark condition has a negative-bias shift of current-voltage (I-V) curves by 0.78 V compared to reference diode without DNA. However, the I-V curves move towards positive bias side by 0.75 V and 1.02 V for the halogen- and UV-exposed photodiode, respectively. These cause electrically different polarity and amount for halogen- and UV-induced photocurrents, indicating that the DNA-CTMA on n-GaN is quite effective for recognizing visible and UV lights as a dual-detectable photodiode. The formation and charge transport mechanisms are also discussed.

3.
Curr Pharm Des ; 19(26): 4674-86, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23260025

RESUMO

Multiple approaches have been devised and evaluated to computationally estimate binding free energies. Results using a recently developed Quantum Mechanics (QM)/Molecular Mechanics (MM) based Free Energy Perturbation (FEP) method suggest that this method has the potential to provide the most accurate estimation of binding affinities to date. The method treats ligands/inhibitors using QM while using MM for the rest of the system. The method has been applied and validated for a structurally diverse set of fructose 1,6- bisphosphatase (FBPase) inhibitors suggesting that the approach has the potential to be used as an integral part of drug discovery for both lead identification lead optimization, where there is a structure available. In addition, this QM/MM-based FEP method was shown to accurately replicate the anomalous hydration behavior exhibited by simple amines and amides suggesting that the method may also prove useful in predicting physical properties of molecules. While the method is about 5-fold more computationally demanding than conventional FEP, it has the potential to be less demanding on the end user since it avoids development of MM force field parameters for novel ligands and thereby eliminates this time-consuming step that often contributes significantly to the inaccuracy of binding affinity predictions using conventional FEP methods. The QM/MM-based FEP method has been extensively tested with respect to important considerations such as the length of the simulation required to obtain satisfactory convergence in the calculated relative solvation and binding free energies for both small and large structural changes between ligands. Future automation of the method and parallelization of the code is expected to enhance the speed and increase its use for drug design and lead optimization.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Frutose-Bifosfatase/antagonistas & inibidores , Teoria Quântica , Desenho Assistido por Computador , Inibidores Enzimáticos/farmacologia , Simulação de Dinâmica Molecular , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...