Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37546883

RESUMO

Systemic lupus erythematosus (SLE) is a complex autoimmune disease with a strong genetic basis. Despite the identification of several single nucleotide polymorphisms (SNPs) near the SLC15A4 gene that are significantly associated with SLE across multiple populations, specific causal SNP(s) and molecular mechanisms responsible for disease susceptibility are unknown. To address this gap, we employed bioinformatics, expression quantitative trait loci (eQTLs), and 3D chromatin interaction analysis to nominate a likely functional variant, rs35907548, in an active intronic enhancer of SLC15A4 . Through luciferase reporter assays followed by chromatin immunoprecipitation (ChIP)-qPCR, we observed significant allele-specific enhancer effects of rs35907548 in diverse cell lines. The rs35907548 risk allele T is associated with increased regulatory activity and target gene expression, as shown by eQTLs and chromosome conformation capture (3C)-qPCR. The latter revealed long-range chromatin interactions between the rs35907548 enhancer and the promoters of SLC15A4, GLTLD1 , and an uncharacterized lncRNA. The enhancer-promoter interactions and expression effects were validated by CRISPR/Cas9 knock-out (KO) of the locus in HL60 promyeloblast cells. KO cells also displayed dramatically dysregulated endolysosomal pH regulation. Together, our data show that the rs35907548 risk allele affects multiple aspects of cellular physiology and may directly contribute to SLE.

2.
medRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37066327

RESUMO

Objectives: Systemic lupus erythematosus (SLE), an autoimmune disease with incompletely understood etiology, has a strong genetic component. Although genome-wide association studies (GWAS) have revealed multiple SLE susceptibility loci and associated single nucleotide polymorphisms (SNPs), the precise causal variants, target genes, cell types, tissues, and mechanisms of action remain largely unknown. Methods: Here, we report a comprehensive post-GWAS analysis using extensive bioinformatics, molecular modeling, and integrative functional genomic and epigenomic analyses to optimize fine-mapping. We compile and cross-reference immune cell-specific expression quantitative trait loci ( cis - and trans -eQTLs) with promoter-capture Hi-C, allele-specific chromatin accessibility, and massively parallel reporter assay data to define predisposing variants and target genes. We experimentally validate a predicted locus using CRISPR/Cas9 genome editing, qPCR, and Western blot. Results: Anchoring on 452 index SNPs, we selected 9,931 high-linkage disequilibrium (r 2 >0.8) SNPs and defined 182 independent non-HLA SLE loci. 3,746 SNPs from 143 loci were identified as regulating 564 unique genes. Target genes are enriched in lupus-related tissues and associated with other autoimmune diseases. Of these, 329 SNPs (106 loci) showed significant allele-specific chromatin accessibility and/or enhancer activity, indicating regulatory potential. Using CRISPR/Cas9, we validated rs57668933 as a functional variant regulating multiple targets, including SLE risk gene ELF1 , in B-cells. Conclusion: We demonstrate and validate post-GWAS strategies for utilizing multi-dimensional data to prioritize likely causal variants with cognate gene targets underlying SLE pathogenesis. Our results provide a catalog of significantly SLE-associated SNPs and loci, target genes, and likely biochemical mechanisms, to guide experimental characterization.

3.
Front Lupus ; 12023.
Artigo em Inglês | MEDLINE | ID: mdl-38317862

RESUMO

Systemic lupus erythematosus (SLE) is a complex autoimmune disease with a strong genetic basis. Despite the identification of several single nucleotide polymorphisms (SNPs) near the SLC15A4 gene that are significantly associated with SLE across multiple populations, specific causal SNP(s) and molecular mechanisms responsible for disease susceptibility are unknown. To address this gap, we employed bioinformatics, expression quantitative trait loci (eQTLs), and 3D chromatin interaction analysis to nominate a likely functional variant, rs35907548, in an active intronic enhancer of SLC15A4. Through luciferase reporter assays followed by chromatin immunoprecipitation (ChIP)-qPCR, we observed significant allele-specific enhancer effects of rs35907548 in diverse cell lines. The rs35907548 risk allele T is associated with increased regulatory activity and target gene expression, as shown by eQTLs and chromosome conformation capture (3C)-qPCR. The latter revealed long-range chromatin interactions between the rs35907548 enhancer and the promoters of SLC15A4, GLTLD1, and an uncharacterized lncRNA. The enhancer-promoter interactions and expression effects were validated by CRISPR/Cas9 knock-out (KO) of the locus in HL60 promyeloblast cells. KO cells also displayed dramatically dysregulated endolysosomal pH regulation. Together, our data show that the rs35907548 risk allele affects multiple aspects of cellular physiology and may directly contribute to SLE.

4.
Int J Mol Sci ; 18(10)2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28961193

RESUMO

Fascaplysin has been reported to exert anti-cancer effects by inhibiting cyclin-dependent kinase 4 (CDK4); however, the precise mode of action by which fascaplysin suppresses tumor growth is not clear. Here, we found that fascaplysin has stronger anti-cancer effects than other CDK4 inhibitors, including PD0332991 and LY2835219, on lung cancer cells that are wild-type or null for retinoblastoma (RB), indicating that unknown target molecules might be involved in the inhibition of tumor growth by fascaplysin. Fascaplysin treatment significantly decreased tumor angiogenesis and increased cleaved-caspase-3 in xenografted tumor tissues. In addition, survivin and HIF-1α were downregulated in vitro and in vivo by suppressing 4EBP1-p70S6K1 axis-mediated de novo protein synthesis. Kinase screening assays and drug-protein docking simulation studies demonstrated that fascaplysin strongly inhibited vascular endothelial growth factor receptor 2 (VEGFR2) and tropomyosin-related kinase A (TRKA) via DFG-out non-competitive inhibition. Overall, these results suggest that fascaplysin inhibits TRKA and VEGFR2 and downregulates survivin and HIF-1α, resulting in suppression of tumor growth. Fascaplysin, therefore, represents a potential therapeutic approach for the treatment of multiple types of solid cancer.


Assuntos
Antineoplásicos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Indóis/farmacologia , Proteínas Inibidoras de Apoptose/genética , Neoplasias/tratamento farmacológico , Receptor trkA/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Indóis/uso terapêutico , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Receptor trkA/metabolismo , Survivina , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
J Microbiol Biotechnol ; 27(5): 878-895, 2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28238001

RESUMO

Phosphorylation, a critical mechanism in biological systems, is estimated to be indispensable for about 30% of key biological activities, such as cell cycle progression, migration, and division. It is synergistically balanced by kinases and phosphatases, and any deviation from this balance leads to disease conditions. Pathway or biological activity-based abnormalities in phosphorylation and the type of involved phosphatase influence the outcome, and cause diverse diseases ranging from diabetes, rheumatoid arthritis, and numerous cancers. Protein tyrosine phosphatases (PTPs) are of prime importance in the process of dephosphorylation and catalyze several biological functions. Abnormal PTP activities are reported to result in several human diseases. Consequently, there is an increased demand for potential PTP inhibitory small molecules. Several strategies in structure-based drug designing techniques for potential inhibitory small molecules of PTPs have been explored along with traditional drug designing methods in order to overcome the hurdles in PTP inhibitor discovery. In this review, we discuss druggable PTPs and structure-based virtual screening efforts for successful PTP inhibitor design.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Fosforilação/fisiologia , Proteínas Tirosina Fosfatases/efeitos dos fármacos , Proteínas Tirosina Fosfatases/fisiologia , Domínio Catalítico , Diabetes Mellitus/tratamento farmacológico , Doença , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Descoberta de Drogas , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Monoéster Fosfórico Hidrolases/fisiologia , Fosfotransferases/fisiologia , Conformação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1/fisiologia , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...