Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Structure ; 16(10): 1555-61, 2008 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-18940610

RESUMO

The crystal structure of Seneca Valley Virus-001 (SVV-001), the representative member of a new genus, Senecavirus, is reported at 2.3A resolution. SVV-001 is the first naturally occurring nonpathogenic picornavirus shown to mediate selective cytotoxicity towards tumor cells with neuroendocrine cancer features. The nonsegmented (+) ssRNA genome of SVV-001 shares closest sequence similarity with the genomes of the members of Cardiovirus. The overall tertiary structure of VP1-VP4 subunits is conserved with the exception of loops, especially those of VP1 that show large deviations relative to the members of the cardioviruses. The surface loops of VP1 and VP2 are predicted to mediate cell tropism of SVV-001. In addition, the organization of the packaged nucleic acid density indicates that certain regions of VP2 and VP4 interact closely with the packaged nucleic acid.


Assuntos
Vírus Oncolíticos/química , Vírus Oncolíticos/classificação , Picornaviridae/química , Picornaviridae/classificação , Modelos Moleculares , Conformação de Ácido Nucleico , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , RNA Viral/química , Receptores Virais/química , Receptores Virais/metabolismo , Vírion/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-18391430

RESUMO

Seneca Valley Virus-001 (SVV-001) is a newly found species in the Picornaviridae family. SVV-001 is the first naturally occurring nonpathogenic picornavirus observed to mediate selective cytotoxicity towards tumor cells with neuroendocrine cancer features. The nonsegmented (+)ssRNA genome of SVV-001 shares closest sequence similarity to the genomes of the members of the Cardiovirus genus. However, based on the distinct characteristics of the genome organization and other biochemical properties, it has been suggested that SVV-001 represents a new genus, namely 'Senecavirus', in the Picornaviridae family. In order to understand the oncolytic properties of SVV-001, the native virus was crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group R3, with unit-cell parameters (in the hexagonal setting) a = b = 311.5, c = 1526.4 A. Although the SVV crystals diffracted to better than 2.3 A resolution, the data quality is acceptable [I/sigma(I) > 2.0] to 2.6 A resolution. The unit-cell volume and the locked rotation-function analysis suggest that six particles could be accommodated in the unit cell, with two distinct sets of one third of a particle, each containing 20 protomers, occupying the crystallographic asymmetric unit. (ClinicalTrials.gov identifier NCT00314925)


Assuntos
Proteínas do Capsídeo/química , Picornaviridae/química , Difração de Raios X , Proteínas do Capsídeo/isolamento & purificação , Cardiovirus/química , Cristalização , Picornaviridae/isolamento & purificação
3.
Cancer Gene Ther ; 12(8): 715-22, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15832172

RESUMO

Conditionally replicating adenoviruses that selectively replicate in tumor cells, but not in normal cells, are being explored as virotherapeutic agents for cancer. A prostate-specific oncolytic adenovirus, CG7870 is currently being evaluated in phase 1/2 clinical trials for the treatment of prostate cancer. To decrease the effective dose and further increase the therapeutic efficacy of CG7870, the combination of virotherapy with radiation therapy was explored in this study. CG7870 is an oncolytic adenovirus in which tumor-specific promoters are driving the expression of E1A and E1B proteins. The effects of combined treatment with CG7870 and radiation on cultured cells were determined in cytotoxicity and virus yield assays. The antitumor efficacy of CG7870 (1 x 10(7) particles/mm3 of tumor), 10 Gy of local radiation or both was evaluated in established subcutaneous LNCaP xenografts in nude mice. In vitro, the dual agent treatment resulted in synergistically enhanced potency at suboptimal doses of radiation and virus. Virus yield in irradiated cells increased relative to yield in nonirradiated cells without compromising the specificity of the vector for its target cell types. In vivo, CG7870 treatment alone suppressed tumor growth and extended tumor nonprogression time. The average tumor-volume of the groups treated with CG7870 only and radiation only was 121 and 126% of baseline, respectively, 39 days after treatment. The average tumor-volume of the combination group was 34% of baseline 39 days after a single dose of treatment. No significant body weight loss was observed in any treatment group. There was a significant drop in serum level of prostate-specific antigen (PSA) in the combination group compared to the group treated with either agent alone. In mice treated with CG7870 only or radiation only, serum PSA levels changed to 26 and 383% of baseline, respectively, by study day 46. In contrast, PSA levels in mice treated with CG7870 plus radiation decreased to less than 11% of baseline by study day 46. Histological analysis of tumor sections collected from the combination group revealed enhanced necrosis and more apoptotic cells. Combination of CG7870 with radiotherapy significantly increased antitumor efficacy compared to either agent alone. These results suggest that CG7870 in combination with radiation has improved antitumor efficacy at lower doses and with no additional side effects.


Assuntos
Adenoviridae/genética , Neoplasias da Próstata/terapia , Animais , Apoptose , Terapia Combinada , Terapia Genética , Humanos , Masculino , Camundongos , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/radioterapia , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...