Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 11(17): 11930-11944, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522351

RESUMO

We hypothesized congruence in the spatial structure of abundance data sampled across multiple scales for an ecological guild of consumers that exploit similar nutritional and habitat resources. We tested this hypothesis on the spatial organization of abundance of an herbivorous guild of sea urchins. We also examined whether the amount of local along-shore rocky habitat can explain the observed spatial patterns of abundance. Standardized estimates of abundance of four intertidal sea urchins-Diadema cf. savignyi, Echinometra mathaei, Parechinus angulosus, and Stomopneustes variolaris-were determined by six observers at 105 sites across 2,850 km of coast of South Africa. For each species and observer, wavelet analysis was used on abundance estimates, after controlling for potential biases, to examine their spatial structure. The relationship between local sea urchin abundance and the amount of upstream and downstream rocky habitat, as defined by the prevailing ocean current, was also investigated. All species exhibited robust structure at scales of 75-220 km, despite variability among observers. Less robust structure in the abundances of three species was detected at larger scales of 430-898 km. Abundance estimates of sympatric populations of two species (D. cf. savignyi and E. mathaei) were positively correlated with the amount of rocky habitat upstream of the site, suggesting that upstream populations act as larval sources across a wide range of scales. No relationship between abundance and habitat size was found for P. angulosus or S. variolaris. Within the range of scales examined, we found robust congruence in spatial structure in abundance at the lower, but not the larger, range of scales for all four species. The relationship between abundance and upstream habitat availability in two species suggests that larval supply from upstream populations was probably the mechanism linking habitat size and abundance.

2.
Sci Rep ; 10(1): 15816, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978550

RESUMO

Stable isotope mixing models are regularly used to provide probabilistic estimates of source contributions to dietary mixtures. Whilst Bayesian implementations of isotope mixing models have become prominent, the use of appropriate diet-tissue discrimination factors (DTDFs) remains as the least resolved aspect. The DTDFs are critical in providing accurate inferences from these models. Using both simulated and laboratory-based experimental data, this study provides conceptual and practical applications of isotope mixing models by exploring the role of DTDFs. The experimental study used Mozambique Tilapia Oreochromis mossambicus, a freshwater fish, to explore multi-tissue variations in isotopic incorporation patterns, and to evaluate isotope mixing model outputs based on the experiment- and literature-based DTDFs. Isotope incorporation patterns were variable for both muscle and fin tissues among the consumer groups that fed diet sources with different stable isotope values. Application of literature-based DTDFs in isotope mixing models consistently underestimated the dietary proportions of all single-source consumer groups. In contrast, application of diet-specific DTDFs provided better dietary estimates for single-source consumer groups. Variations in the proportional contributions of the individual sources were, nevertheless, observed for the mixed-source consumer group, which suggests that isotope assimilation of the individual food sources may have been influenced by other underlying physiological processes. This study provides evidence that stable isotope values from different diet sources exhibit large variations as they become incorporated into consumer tissues. This suggests that the application of isotope mixing models requires consideration of several aspects such as diet type and the associated biological processes that may influence DTDFs.


Assuntos
Isótopos de Carbono/análise , Dieta , Comportamento Alimentar , Peixes/fisiologia , Modelos Estatísticos , Isótopos de Nitrogênio/análise , Animais , Água Doce
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...