Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gastroenterol ; 56(11): 999-1007, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34480209

RESUMO

BACKGROUND AND AIMS: Polymorphisms in the nucleotide diphosphate-linked moiety X-type motif 15 (NUDT15) gene are associated with thiopurine-induced leukopenia in patients with inflammatory bowel disease (IBD). NUDT15-associated subcellular thiopurine metabolism has not been investigated in primary lymphocytes. We hypothesized that NUDT15 mutation increases DNA-incorporated deoxythioguanosine (dTG) and induces apoptosis in lymphocytes. METHODS: DNA-incorporated dTG in peripheral blood mononuclear cells (PBMCs) and 6-thioguanine nucleotides (6-TGN) in red blood cells were measured in patients with IBD undergoing thiopurine treatment. The association of a single nucleotide polymorphism for NUDT15 (rs116855232) with dTGPBMC was examined. The pro-apoptotic effect of DNA-incorporated dTG was examined ex vivo in association with NUDT15 genotypes by co-culturing patient-derived peripheral CD4+ T lymphocytes with 6-thioguanine (6-TG). RESULTS: dTGPBMC was significantly higher in NUDT15 variants than in non-variants. dTGPBMC, but not 6-TGNRBC, negatively correlated with peripheral lymphocyte counts (r = - 0.31 and - 0.12, p = 0.012 and 0.173, respectively). DNA-incorporated dTG significantly accumulated to a greater extent in lymphocytes from NUDT15 variants when co-cultured with 6-TG ex vivo than in those from non-variants and was associated with decreased proliferation and increased apoptosis. CONCLUSION: Increased DNA-incorporated dTG may be responsible for thiopurine-induced leukocytopenia through cell apoptosis in IBD patients with NUDT15 mutation.


Assuntos
Doenças Inflamatórias Intestinais/complicações , Leucopenia/etiologia , Metiltransferases/efeitos adversos , Pirofosfatases/análise , Adulto , Apoptose , Estudos Transversais , Feminino , Humanos , Doenças Inflamatórias Intestinais/sangue , Japão , Leucopenia/sangue , Masculino , Metiltransferases/análise , Pessoa de Meia-Idade , Pirofosfatases/sangue
2.
Cell Commun Signal ; 17(1): 40, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046795

RESUMO

Retinoic acid (RA) is the active metabolite of vitamin A and essential for many physiological processes, particularly the induction of cell differentiation. In addition to regulating genomic transcriptional activity via RA receptors (RARs) and retinoid X receptors (RXRs), non-genomic mechanisms of RA have been described, including the regulation of ERK1/2 kinase phosphorylation, but are poorly characterised. In this study, we test the hypothesis that genomic and non-genomic mechanisms of RA are regulated independently with respect to the involvement of ligand-dependent RA receptors. A panel of 28 retinoids (compounds with vitamin A-like activity) showed a marked disparity in genomic (gene expression) versus non-genomic (ERK1/2 phosphorylation) assays. These results demonstrate that the capacity of a compound to activate gene transcription does not necessarily correlate with its ability to regulate a non-genomic activity such as ERK 1/2 phosphorylation. Furthermore, a neurite outgrowth assay indicated that retinoids that could only induce either genomic, or non-genomic activities, were not strong promoters of neurite outgrowth, and that activities with respect to both transcriptional regulation and ERK1/2 phosphorylation produced maximum neurite outgrowth. These results suggest that the development of effective retinoids for clinical use will depend on the selection of compounds which have maximal activity in non-genomic as well as genomic assays.


Assuntos
Sistema de Sinalização das MAP Quinases , Crescimento Neuronal/efeitos dos fármacos , Retinoides/farmacologia , Transcriptoma , Linhagem Celular Tumoral , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo
3.
Mol Neurobiol ; 56(10): 7074-7084, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30972628

RESUMO

Retinoic acid (RA) regulates numerous aspects of central nervous system function through modulation of gene transcription via retinoic acid receptors (RARs). However, RA has important roles independent of gene transcription (non-genomic actions) and in the brain a crucial regulator of homeostatic plasticity is RAR control of glutamate receptor subunit 1 (GluR1) translation. An assay to quantify RAR regulation of GluR1 translation would be beneficial both to study the molecular components regulating this system and screen drugs that influence this critical mechanism for learning and memory in the brain. A bioluminescence reporter assay was developed that expresses firefly luciferase under the control of the GluR1 5' untranslated region bound by RAR. This assay was introduced into SH-SY5Y cells and used to demonstrate the role of RARα in RA regulation of GluR1 translation. A screen of synthetic RAR and RXR ligands indicated that only a subset of these ligands activated GluR1 translation. The results demonstrate the practicality of this assay to explore the contribution of RARα to this pathway and that the capacity of RAR ligands to activate translation is a quality restricted to a limited number of compounds, with implications for their RAR selectivity and potentially their specificity in drug use.


Assuntos
Bioensaio , Genes Reporter , Luminescência , Biossíntese de Proteínas/efeitos dos fármacos , Receptores de AMPA/biossíntese , Tretinoína/farmacologia , Regiões 5' não Traduzidas/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Humanos , Ligantes , Ratos , Receptor alfa de Ácido Retinoico/genética , Tretinoína/química
4.
ACS Chem Biol ; 14(3): 369-377, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30707838

RESUMO

Retinoids, such as all- trans-retinoic acid (ATRA), are endogenous signaling molecules derived from vitamin A that influence a variety of cellular processes through mediation of transcription events in the cell nucleus. Because of these wide-ranging and powerful biological activities, retinoids have emerged as therapeutic candidates of enormous potential. However, their use has been limited, to date, due to a lack of understanding of the complex and intricate signaling pathways that they control. We have designed and synthesized a family of synthetic retinoids that exhibit strong, intrinsic, solvatochromatic fluorescence as multifunctional tools to interrogate these important biological activities. We utilized the unique photophysical characteristics of these fluorescent retinoids to develop a novel in vitro fluorometric binding assay to characterize and quantify their binding to their cellular targets, including cellular retinoid binding protein II (CRABPII). The dihydroquinoline retinoid, DC360, exhibited particularly strong binding ( Kd = 34.0 ± 2.5 nM), and we further used X-ray crystallography to determine the structure of the DC360-CRABPII complex to 1.8 Å, which showed that DC360 occupies the known hydrophobic retinoid binding pocket. Finally, we used confocal fluorescence microscopy to image the cellular behavior of the compounds in cultured human epithelial cells, highlighting a fascinating nuclear localization, and used RNA sequencing to confirm that the compounds regulate cellular processes similar to those of ATRA. We anticipate that the unique properties of these fluorescent retinoids can now be used to cast new light on the vital and highly complex retinoid signaling pathway.


Assuntos
Corantes Fluorescentes/química , Retinoides/metabolismo , Proteínas Celulares de Ligação ao Retinol/metabolismo , Tretinoína/química , Tretinoína/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Desenho de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imagem Óptica/métodos , Ligação Proteica , Conformação Proteica , Transdução de Sinais
5.
Mol Neurobiol ; 56(2): 857-872, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29802571

RESUMO

Neurogenesis is a complex process leading to the generation of neuronal networks and glial cell types from stem cells or intermediate progenitors. Mapping subcellular and molecular changes accompanying the switch from proliferation to differentiation is vital for developing therapeutic targets for neurological diseases. Neuronal (N-type) and glial (S-type) phenotypes within the SH-SY5Y neuroblastoma cell line have distinct differentiation responses to 9-cis-retinoic acid (9cRA). In both cell phenotypes, these were accompanied at the single cell level by an uncoupling of Ca2+ store release from store-operated Ca2+ entry (SOCE), mediated by changes in the expression of calcium release-activated calcium pore proteins. This remodelling of calcium signalling was moderated by the predominant cell phenotype within the population. N- and S-type cells differed markedly in their phenotypic stability after withdrawal of the differentiation inducer, with the phenotypic stability of S-type cells, both morphologically and with respect to SOCE properties, in marked contrast to the lability of the N-type phenotype. Furthermore, the SOCE response of I-type cells, a presumed precursor to both N- and S-type cells, varied markedly in different cell environments. These results demonstrate the unique biology of neuronal and glial derivatives of common precursors and suggest that direct or indirect interactions between cell types are vital components of neurogenesis that need to be considered in experimental models.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Diferenciação Celular/fisiologia , Neuroglia/metabolismo , Canais de Cálcio/metabolismo , Linhagem Celular , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Neuroblastoma/metabolismo , Neurônios/metabolismo
6.
FEMS Microbiol Lett ; 365(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29590360

RESUMO

Interest in endophytes as natural sources for new medicines was inspired by the discovery of paclitaxel-producing endophytic fungi. This study investigated the anti-cancer activity of extracts of endophytes isolated from two Australian plants, Eremophila longifolia (EL) and Eremophila maculata (EM). Endophytes were isolated from surface-sterilised leaf tissue, grown as pure cultures and identified by sequencing of Internal Transcribed Spacer (ITS) regions of the ribosomal DNA. To determine cytotoxicity, two leukaemic (MOLT-4, T-cell leukaemia; PreB-697, Pre-B leukaemia), a lung cancer cell line (A549) and a normal human fibroblast cell line were treated with endophyte extracts to assess cytotoxicity in relation to alternariol monomethyl ether (AME) and alternariol (AOH). Endophyte extracts that showed cell cytotoxicity were analysed by UV-HPLC to determine the metabolites. Pure AME and AOH, three extracts form Alternaria sp. (EM-6, EM-7 and EM-9) and one from Preussia minima (EL-14) were cytotoxic to the cancer cell lines. All cytotoxic endophytes contained AME and AOH, the most cytotoxic endophyte EM-6 also contained two unique peaks. These data indicate that these four endophyte extracts may have anti-cancer properties due to the presence of AME and AOH; however, the unique compounds found in the EM-6 extract may be exclusively cytotoxic and warrant further investigation.


Assuntos
Antineoplásicos/farmacologia , Endófitos/química , Eremophila (Planta)/microbiologia , Fungos/química , Lactonas/farmacologia , Antineoplásicos/metabolismo , Austrália , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Endófitos/genética , Endófitos/isolamento & purificação , Endófitos/metabolismo , Fungos/classificação , Fungos/isolamento & purificação , Fungos/metabolismo , Humanos , Lactonas/metabolismo , Filogenia
7.
Bioorg Med Chem ; 26(8): 1560-1572, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29439915

RESUMO

Retinoids, such as all-trans-retinoic acid (ATRA), regulate cellular differentiation and signalling pathways in chordates by binding to nuclear retinoic acid receptors (RARα/ß/γ). Polar interactions between receptor and ligand are important for binding and facilitating the non-polar interactions and conformational changes necessary for RAR-mediated transcriptional regulation. The constraints on activity and RAR-type specificity with respect to the structural link between the polar and non-polar functions of synthetic retinoids are poorly understood. To address this, predictions from in silico ligand-RAR docking calculations and molecular dynamics simulations for a small library of stable, synthetic retinoids (designated GZ series) containing a central thiazole linker structure and different hydrophobic region substituents, were tested using a ligand binding assay and a range of cellular biological assays. The docking analysis showed that these thiazole-containing retinoids were well suited to the binding pocket of RARα, particularly via a favorable hydrogen bonding interaction between the thiazole and Ser232 of RARα. A bulky hydrophobic region (i.e., present in compounds GZ23 and GZ25) was important for interaction with the RAR binding pockets. Ligand binding assays generally reflected the findings from in silico docking, and showed that GZ25 was a particularly strongly binding ligand for RARα/ß. GZ25 also exhibited higher activity as an inducer of neuronal differentiation than ATRA and other GZ derivatives. These data demonstrate that GZ25 is a stable synthetic retinoid with improved activity which efficiently regulates neuronal differentiation and help to define the key structural requirements for retinoid activity enabling the design and development of the next generation of more active, selective synthetic retinoids as potential therapeutic regulators of neurogenesis.


Assuntos
Receptores do Ácido Retinoico/antagonistas & inibidores , Retinoides/farmacologia , Tiazóis/farmacologia , Relação Dose-Resposta a Droga , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Receptores do Ácido Retinoico/metabolismo , Retinoides/química , Relação Estrutura-Atividade , Tiazóis/química , Células Tumorais Cultivadas
8.
Mol Neurobiol ; 55(3): 1942-1950, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28244006

RESUMO

All-trans retinoic acid (ATRA) plays key roles in neurogenesis mediated by retinoic acid receptors (RARs). RARs are important targets for the therapeutic regulation of neurogenesis but effective drug development depends on modelling-based strategies to design high-specificity ligands in combination with good biological assays to discriminate between target-specificity and off-target effects. Using neuronal differentiation as a model, the aim of this study was to test the hypothesis that responses across different temporal scales and assay platforms can be used as comparable measures of retinoid activity. In biological assays based on cell phenotype or behaviour, two structurally similar synthetic retinoids, differing in RAR affinity and specificity, retained their relative activities across different temporal scales. In contrast, assays based on the transcriptional activation of specific genes in their normal genomic context were less concordant with biological assays. Gene-induction assays for retinoid activity as modulators of neurogenesis require careful interpretation in the light of variation in ligand-receptor affinity, receptor expression and gene function. A better characterization of neuronal phenotypes and their regulation by retinoids is badly needed as a framework for understanding how to regulate neuronal development.


Assuntos
Neuritos/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Retinoides/síntese química , Retinoides/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/fisiologia , Humanos , Neuritos/fisiologia , Neurogênese/fisiologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/fisiologia , Fatores de Tempo
9.
Inflamm Bowel Dis ; 23(6): 946-955, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28452864

RESUMO

BACKGROUND: Use of azathioprine (AZA) for inflammatory bowel disease is limited by side effects or poor efficacy. Combining low-dose azathioprine with allopurinol (LDAA) bypasses side effects, improves efficacy, and may be appropriate as first-line therapy. We test the hypothesis that standard-dose azathioprine (AZA) and LDAA treatments work by similar mechanisms, using incorporation of the metabolite deoxythioguanosine into patient DNA, white-blood cell counts, and transcriptome analysis as biological markers of drug effect. METHODS: DNA was extracted from peripheral whole-blood from patients with IBD treated with AZA or LDAA, and analyzed for DNA-incorporated deoxythioguanosine. Measurement of red-blood cell thiopurine metabolites was part of usual clinical practice, and pre- and on-treatment (12 wk) blood samples were used for transcriptome analysis. RESULTS: There were no differences in reduction of white-cell counts between the 2 treatment groups, but patients on LDAA had lower DNA-incorporated deoxythioguanosine than those on AZA; for both groups, incorporated deoxythioguanosine was lower in patients on thiopurines for 24 weeks or more (maintenance of remission) compared to patients treated for less than 24 weeks (achievement of remission). Patients on LDAA had higher levels of red-blood cell thioguanine nucleotides than those on AZA, but there was no correlation between these or their methylated metabolites, and incorporated deoxythioguanosine. Transcriptome analysis suggested down-regulation of immune responses consistent with effective immunosuppression in patients receiving LDAA, with evidence for different mechanisms of action between the 2 therapies. CONCLUSIONS: LDAA is biologically effective despite lower deoxythioguanosine incorporation into DNA, and has different mechanisms of action compared to standard-dose azathioprine.


Assuntos
Alopurinol/administração & dosagem , Azatioprina/administração & dosagem , DNA/química , Desoxiguanosina/química , Expressão Gênica/efeitos dos fármacos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Alopurinol/efeitos adversos , Azatioprina/efeitos adversos , Biomarcadores , Desoxiguanosina/análogos & derivados , Quimioterapia Combinada , Perfilação da Expressão Gênica , Humanos , Imunossupressores/uso terapêutico , Contagem de Leucócitos , Metiltransferases/metabolismo , Projetos Piloto , Reino Unido
10.
Medchemcomm ; 8(3): 578-592, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108774

RESUMO

All-trans-retinoic acid (ATRA) and its synthetic analogues EC23 and EC19 direct cellular differentiation by interacting as ligands for the retinoic acid receptor (RARα, ß and γ) family of nuclear receptor proteins. To date, a number of crystal structures of natural and synthetic ligands complexed to their target proteins have been solved, providing molecular level snap-shots of ligand binding. However, a deeper understanding of receptor and ligand flexibility and conformational freedom is required to develop stable and effective ATRA analogues for clinical use. Therefore, we have used molecular modelling techniques to define RAR interactions with ATRA and two synthetic analogues, EC19 and EC23, and compared their predicted biochemical activities to experimental measurements of relative ligand affinity and recruitment of coactivator proteins. A comprehensive molecular docking approach that explored the conformational space of the ligands indicated that ATRA is able to bind the three RAR proteins in a number of conformations with one extended structure being favoured. In contrast the biologically-distinct isomer, 9-cis-retinoic acid (; 9CRA), showed significantly less conformational flexibility in the RAR binding pockets. These findings were used to inform docking studies of the synthetic retinoids EC23 and EC19, and their respective methyl esters. EC23 was found to be an excellent mimic for ATRA, and occupied similar binding modes to ATRA in all three target RAR proteins. In comparison, EC19 exhibited an alternative binding mode which reduces the strength of key polar interactions in RARα/γ but is well-suited to the larger RARß binding pocket. In contrast, docking of the corresponding esters revealed the loss of key polar interactions which may explain the much reduced biological activity. Our computational results were complemented using an in vitro binding assay based on FRET measurements, which showed that EC23 was a strongly binding, pan-agonist of the RARs, while EC19 exhibited specificity for RARß, as predicted by the docking studies. These findings can account for the distinct behaviour of EC23 and EC19 in cellular differentiation assays, and additionally, the methods described herein can be further applied to the understanding of the molecular basis for the selectivity of different retinoids to RARα, ß and γ.

11.
Artigo em Inglês | MEDLINE | ID: mdl-27362994

RESUMO

Adverse reactions and non-response are common in patients treated with thiopurine drugs. Current monitoring of drug metabolite levels for guiding treatment are limited to analysis of thioguanine nucleotides (TGNs) in erythrocytes after chemical derivatisation. Erythrocytes are not the target tissue and TGN levels show poor correlations with clinical response. We have developed a sensitive assay to quantify deoxythioguanosine (dTG) without derivatisation in the DNA of nucleated blood cells. Using liquid chromatography and detection by tandem mass spectrometry, an intra- and inter-assay variability below 7.8% and 17.0% respectively were achieved. The assay had a detection limit of 0.0003125ng (1.1 femtomoles) dTG and was quantified in DNA samples relative to endogenous deoxyadenosine (dA) in a small group of 20 patients with inflammatory bowel disease, all of whom had been established on azathioprine (AZA) therapy for more than 25 weeks. These patients had dTG levels of 20-1360mol dTG/10(6)mol dA; three patients who had not started therapy had no detectable dTG. This method, comparable to previous methods in sensitivity, enables the direct detection of a cytotoxic thiopurine metabolite without derivatisation in an easily obtainable, stable sample and will facilitate a better understanding of the mechanisms of action of these inexpensive yet effective drugs.


Assuntos
DNA/química , Desoxiguanosina/análogos & derivados , Imunossupressores/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Mercaptopurina/uso terapêutico , Tionucleosídeos/análise , Células Sanguíneas/química , Células Sanguíneas/efeitos dos fármacos , Cromatografia Líquida/métodos , DNA/sangue , Desoxiguanosina/análise , Desoxiguanosina/sangue , Humanos , Doenças Inflamatórias Intestinais/sangue , Espectrometria de Massas em Tandem/métodos , Tionucleosídeos/sangue
12.
Br J Haematol ; 171(4): 595-605, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26310606

RESUMO

Glucocorticoid (GC) resistance is a continuing clinical problem in childhood acute lymphoblastic leukaemia (ALL) but the underlying mechanisms remain unclear. A proteomic approach was used to compare profiles of the B-lineage ALL GC-sensitive cell line, PreB 697, and its GC-resistant sub-line, R3F9, pre- and post-dexamethasone exposure. PAX5, a transcription factor critical to B-cell development was differentially regulated in the PreB 697 compared to the R3F9 cell line in response to GC. PAX5 basal protein expression was less in R3F9 compared to its GC-sensitive parent and confirmed to be lower in other GC-resistant sub-lines of Pre B 697 and was associated with a decreased expression of the PAX5 transcriptional target, CD19. Gene set enrichment analysis showed that increasing GC-resistance was associated with differentiation from preB-II to an immature B-lymphocyte stage. GC-resistant sub-lines were shown to have higher levels of phosphorylated JNK compared to the parent line and JNK inhibition caused re-sensitization to GC. Exploiting this maturation may be key to overcoming GC resistance and targeting signalling pathways linked to the maturation state, such as JNK, may be a novel approach.


Assuntos
Antineoplásicos/farmacologia , Linfócitos B/efeitos dos fármacos , Dexametasona/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , MAP Quinase Quinase 4/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Neoplasias/biossíntese , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteômica/métodos , Apoptose/efeitos dos fármacos , Linfócitos B/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/fisiologia , Éxons/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Reação em Cadeia da Polimerase Multiplex , Mutação , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Fator de Transcrição PAX5/genética , Fator de Transcrição PAX5/fisiologia , Fosforilação/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/enzimologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem
13.
J Invest Dermatol ; 135(6): 1629-1637, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25674907

RESUMO

Although the global incidence of cutaneous melanoma is increasing, survival rates for patients with metastatic disease remain <10%. Novel treatment strategies are therefore urgently required, particularly for patients bearing BRAF/NRAS wild-type tumors. Targeting autophagy is a means to promote cancer cell death in chemotherapy-resistant tumors, and the aim of this study was to test the hypothesis that cannabinoids promote autophagy-dependent apoptosis in melanoma. Treatment with Δ(9)-Tetrahydrocannabinol (THC) resulted in the activation of autophagy, loss of cell viability, and activation of apoptosis, whereas cotreatment with chloroquine or knockdown of Atg7, but not Beclin-1 or Ambra1, prevented THC-induced autophagy and cell death in vitro. Administration of Sativex-like (a laboratory preparation comprising equal amounts of THC and cannabidiol (CBD)) to mice bearing BRAF wild-type melanoma xenografts substantially inhibited melanoma viability, proliferation, and tumor growth paralleled by an increase in autophagy and apoptosis compared with standard single-agent temozolomide. Collectively, our findings suggest that THC activates noncanonical autophagy-mediated apoptosis of melanoma cells, suggesting that cytotoxic autophagy induction with Sativex warrants clinical evaluation for metastatic disease.


Assuntos
Autofagia , Canabinoides/química , Melanoma/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Canabidiol , Canabinol/química , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Dacarbazina/análogos & derivados , Dacarbazina/química , Dronabinol/química , Combinação de Medicamentos , Humanos , Masculino , Melanoma/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Microscopia Confocal , Metástase Neoplásica , Transplante de Neoplasias , Neoplasias/metabolismo , Extratos Vegetais/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias Cutâneas/metabolismo , Temozolomida , Proteínas ras/metabolismo
14.
Clin Exp Metastasis ; 31(6): 651-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24859418

RESUMO

COX2 is an inducible cyclooxygenase implicated in the metastasis and migration of tumour cells. In neuroblastoma, COX2 expression has been detected in both cell lines and tumours. The treatment of neuroblastoma cells in vitro with celecoxib, a COX2 inhibitor, induces apoptosis. The aim of this study was to investigate the role of COX2 in neuroblastoma tumour biology by creating a cell line in which COX2 could be conditionally expressed. Xenograft studies showed that the conditional expression of COX2 enhanced tumour growth and malignancy. Elevated COX2 expression enhanced the proliferation and migration of neuroblastoma cells in vitro. However, elevated COX2 expression or variation between cell lines did not affect sensitivity to the COX2 inhibitor celecoxib, indicating that celecoxib does not promote cell death through COX2 inhibition. These data show that increased COX2 expression alone can enhance the tumorigenic properties of neuroblastoma cells; however, high levels of COX2 may not be a valid biomarker of sensitivity to non-steroidal anti-inflammatory drugs such as celecoxib.


Assuntos
Morte Celular , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Neuroblastoma/enzimologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Animais , Celecoxib , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Neuroblastoma/patologia
15.
Exp Dermatol ; 22(11): 767-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24118207

RESUMO

The Bcl-2 family member Mcl-1 is essential for melanoma survival; however, the influence of oncogenic BRAF signalling remains elusive. In this study, Mcl-1 splice variant expression was determined in a panel of melanoma cell lines in relation to BRAF mutational status. Mcl-1L mRNA expression was increased in melanoma cells compared with primary melanocytes with significantly increased mRNA and protein expression observed in BRAF(V600E) mutant melanoma cells. Although no change in Mcl-1S mRNA was observed, Mcl-1S protein expression also increased in BRAF mutant melanoma cells. Additionally, while over-expression of mutant BRAF(V600E) increased both Mcl-1L and Mcl-1S expression, inhibition of hyperactive BRAF signalling resulted in decreased Mcl-1L expression. These studies suggest that the regulation of Mcl-1 expression by BRAF signalling is increased by oncogenic activation of BRAF, revealing a mechanism of apoptotic resistance which may be overcome by the use of more specifically targeted Mcl-1 inhibitors.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Apoptose , Linhagem Celular Tumoral , Humanos , Melanócitos/metabolismo , Melanoma/genética , Mutação , Neoplasias Cutâneas/genética , Melanoma Maligno Cutâneo
16.
PLoS One ; 8(7): e68859, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874790

RESUMO

Retinoic acid (RA) has paradoxical effects on cancer cells: promoting cell death, differentiation and cell cycle arrest, or cell survival and proliferation. Arachidonic acid (AA) release occurs in response to RA treatment and, therefore, AA and its downstream metabolites may be involved in cell survival signalling. To test this, we inhibited phospholipase A2-mediated AA release, cyclooxygenases and lipoxygenases with small-molecule inhibitors to determine if this would sensitise cells to cell death after RA treatment. The data suggest that, in response to RA, phospholipase A2-mediated release of AA and subsequent metabolism by lipoxygenases is important for cell survival. Evidence from gene expression reporter assays and PPARδ knockdown suggests that lipoxygenase metabolites activate PPARδ. The involvement of PPARδ in cell survival is supported by results of experiments with the PPARδ inhibitor GSK0660 and siRNA-mediated knockdown. Quantitative reverse transcriptase PCR studies demonstrated that inhibition of 5-lipoxygenase after RA treatment resulted in a strong up-regulation of mRNA for PPARδ2, a putative inhibitory PPARδ isoform. Over-expression of PPARδ2 using a tetracycline-inducible system in neuroblastoma cells reduced proliferation and induced cell death. These data provide evidence linking lipoxygenases and PPARδ in a cell survival-signalling mechanism and suggest new drug-development targets for malignant and hyper-proliferative diseases.


Assuntos
Ácido Araquidônico/metabolismo , Neuroblastoma/metabolismo , PPAR delta/metabolismo , Transdução de Sinais , Araquidonato 5-Lipoxigenase/metabolismo , Ácido Araquidônico/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Ativação Enzimática/efeitos dos fármacos , Expressão Gênica , Humanos , Isoenzimas , Neuroblastoma/genética , PPAR delta/genética , Transdução de Sinais/efeitos dos fármacos
17.
Biochim Biophys Acta ; 1833(3): 643-51, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23220046

RESUMO

Neuroblastoma cell lines are heterogeneous, comprised of at least three distinct cell phenotypes; neuroblastic N-type cells, non-neuronal substrate-adherent S-type cells and intermediate I-type cells. N- and S-type cell populations were enriched from the parental SH-SY5Y neuroblastoma cell line and induced to differentiate by the addition of retinoic acid (RA), a drug used in the treatment of neuroblastoma. N- and S-type cells were identified based on their differential expression of ß-tubulin III, vimentin and Bcl-2. Store-operated Ca(2+) entry (SOCE) was then measured in proliferating and differentiated N- and S-type cell populations and the expression of STIM1, Orai1 and TRPC1, three proteins reported to play a key role in SOCE, was determined. In N-type cells the RA-induced switch from proliferation to differentiation was accompanied by a down-regulation in SOCE. STIM1 and Orai1 expression became down-regulated in differentiated cells, consistent with their respective roles as ER Ca(2+) sensor and store-operated Ca(2+) channel (SOC). TRPC1 became up-regulated suggesting that TRPC1 is not involved in SOCE, at least in differentiated N-type cells. In S-type cells SOCE remained active following the RA-induced switch from proliferation to differentiation and the expression of STIM1 and Orai1 remained unchanged. TRPC1 was not expressed in S-type cells. Our results indicate that differentiation of neuronal cells is associated with a remodelling of SOCE. Therapeutic targeting of SOCE proteins could potentially be a means of promoting neuronal differentiation in the treatment of neuroblastoma.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Neuroblastoma/metabolismo , Canais de Cátion TRPC/metabolismo , Antineoplásicos/farmacologia , Western Blotting , Sinalização do Cálcio/efeitos dos fármacos , Imunofluorescência , Humanos , Transporte de Íons/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Proteína ORAI1 , Molécula 1 de Interação Estromal , Tretinoína/farmacologia , Células Tumorais Cultivadas
18.
Bioorg Med Chem ; 20(20): 6080-8, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22989911

RESUMO

The role of all-trans-retinoic acid (ATRA) in the development and maintenance of many epithelial and neural tissues has raised great interest in the potential of ATRA and related compounds (retinoids) as pharmacological agents, particularly for the treatment of cancer, skin, neurodegenerative and autoimmune diseases. The use of ATRA or prodrugs as pharmacological agents is limited by a short half-life in vivo resulting from the activity of specific ATRA hydroxylases, CYP26 enzymes, induced by ATRA in liver and target tissues. For this reason retinoic acid metabolism blocking agents (RAMBAs) have been developed for treating cancer and a wide range of other diseases. The synthesis, CYP26A1 inhibitory activity and molecular modeling studies of novel methyl 3-[4-(arylamino)phenyl]-3-(azole)-2,2-dimethylpropanoates are presented. From this series of compounds clear SAR can be derived for 4-substitution of the phenyl ring with electron-donating groups more favourable for inhibitory activity. Both the methylenedioxyphenyl imidazole (17, IC(50) = 8 nM) and triazole (18, IC(50) = 6.7 nM) derivatives were potent inhibitors with additional binding interactions between the methylenedioxy moiety and the CYP26 active site likely to be the main factor. The 6-bromo-3-pyridine imidazole 15 (IC(50) = 5.7 nM) was the most active from this series compared with the standards liarozole (IC(50) = 540 nM) and R116010 (IC(50) = 10 nM).


Assuntos
Aminopiridinas/síntese química , Azóis/química , Inibidores das Enzimas do Citocromo P-450 , Fenilpropionatos/síntese química , Propionatos/química , Aminopiridinas/química , Aminopiridinas/farmacologia , Sítios de Ligação , Domínio Catalítico , Sobrevivência Celular/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Imidazóis , Células MCF-7 , Microssomos/metabolismo , Simulação de Acoplamento Molecular , Fenilpropionatos/química , Fenilpropionatos/farmacologia , Propionatos/síntese química , Propionatos/farmacologia , Ácido Retinoico 4 Hidroxilase , Relação Estrutura-Atividade , Tretinoína/farmacologia , Triazóis/química
19.
Bioorg Med Chem ; 20(14): 4201-7, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22727372

RESUMO

Retinoic acid (RA), the biologically active metabolite of vitamin A, is used medicinally for the treatment of hyperproliferative diseases including dermatological conditions and cancer. The antiproliferative effects of RA have been well documented as well as the limitations owing to toxicity and the development of resistance to RA therapy. RA metabolism inhibitors (RAMBAs or CYP26 inhibitors) are attracting increasing interest as an alternative method for enhancing endogenous levels of retinoic acid in the treatment of hyperproliferative disease. Here the synthesis and inhibitory activity of novel 3-(1H-imidazol- and triazol-1-yl)-2,2-dimethyl-3-(4-(phenylamino)phenyl)propyl derivatives in a MCF-7 CYP26A1 microsomal assay are described. The most promising inhibitor methyl 2,2-dimethyl-3-(4-(phenylamino)phenyl)-3-(1H-1,2,4-triazol-1-yl)propanoate (6) exhibited an IC(50) of 13 nM (compared with standards Liarozole IC(50) 540 nM and R116010 IC(50) 10 nM) and was further evaluated for CYP selectivity using a panel of CYP with >100-fold selectivity for CYP26 compared with CYP1A2, 2C9 and 2D6 observed and 15-fold selectivity compared with CYP3A4. The results demonstrate the potential for further development of these potent inhibitors.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/química , Imidazóis/química , Propionatos/química , Triazóis/química , Linhagem Celular Tumoral , Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores Enzimáticos/síntese química , Ésteres , Humanos , Propionatos/síntese química , Ácido Retinoico 4 Hidroxilase , Relação Estrutura-Atividade , Triazóis/síntese química
20.
Cell Cycle ; 10(21): 3778-87, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22052359

RESUMO

BACKGROUND: MYCN oncogene amplification occurs in 20-25% of neuroblastoma and is associated with a poor prognosis. We previously reported that MYCN amplified (MNA) p53 wild-type neuroblastoma cell lines failed to G1 arrest in response to irradiation, but this could not be attributed to MYCN alone. HYPOTHESIS: Genes co-amplified with MYCN and/or the predominant cell type, neuronal (N) or substrate adherent (S) phenotypes determine the downstream response to DNA damage in neuroblastoma cell lines. METHODS: The MYCN amplicons of five MNA and two non-MNA cell line were mapped using 50K Single Nucleotide Polymorphism (SNP) arrays. One MNA (NBL-W) and one non-MNA neuroblastoma cell line (SKNSH) were sub-cloned into N and S-type cells and the p53 pathway investigated after irradiation induced DNA damage. To determine the role of p53 it was knocked down using siRNA. RESULTS: No genes with a potential role in cell cycle regulation were consistently co-amplified in the MNA cell lines studied. High MYCN expressing NBLW-N cells failed to G1 arrest following irradiation and showed impaired induction of p21 and MDM2, whereas low MYCN expressing NBLW-S cells underwent a G1 arrest with induction of p21 and MDM2. Conversely N type cells underwent higher levels of apoptosis than S type cells. Following p53 knockdown in SHSY5Y N-type cells there was a decrease in apoptosis. CONCLUSIONS: The downstream response to DNA damage in p53 wild-type neuroblastoma cell lines is p53 dependent, and determined both by the morphological sub-type and MYCN expression.


Assuntos
Dano ao DNA , Reparo do DNA/fisiologia , Neuroblastoma/genética , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/fisiologia , Polimorfismo de Nucleotídeo Único , Interferência de RNA , Proteína Supressora de Tumor p53/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...