Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 129(3): 474-482, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32702277

RESUMO

Sickle cell disease (SCD) causes exercise intolerance likely due to impaired skeletal muscle function and low nitric oxide (NO) bioavailability. Dietary nitrate improves hemodynamic and metabolic control during exercise in humans and animals. The purpose of this investigation was to assess the impact of nitrate supplementation on exercise capacity as measured by the running speed to exercise duration relationship [critical speed (CS)]in mice with SCD. We tested the hypothesis that nitrate supplementation via beetroot juice (BR) would attenuate the exercise intolerance observed in mice with SCD. Ten wild-type (WT) and 18 Berkley sickle-cell mice (BERK) received water (WT: n = 10, BERK: n = 10) or nitrate-rich BR (BERK+BR: n = 8, nitrate dose 1 mmol/kg/day) for 5 days. Following the supplementation period, all mice performed 3-5 constant-speed treadmill tests that resulted in exhaustion within 1.5 to 20 min. Time to exhaustion vs. treadmill speed was fit to a hyperbolic model to determine CS. CS was significantly lower in BERK vs. WT and BERK+BR with no significant difference between WT and BERK+BR (WT: 36.6 ± 1.6, BERK: 23.8 ± 1.5, BERK+BR: 31.1 ± 2.1 m/min, P < 0.05). Exercise tolerance, measured via CS, was significantly lower in BERK mice relative to WT. However, BERK mice receiving 5 days of nitrate supplementation exhibited no difference in exercise tolerance when compared with WT. These results support the potential utility of a dietary nitrate intervention to improve functionality in SCD patients.NEW & NOTEWORTHY Sickle cell disease compromises muscle O2 delivery resulting in exercise intolerance. Dietary nitrate supplementation increases skeletal muscle blood flow during exercise and may improve exercise capacity in a mouse model of sickle cell disease. We investigated the effects of dietary nitrate supplementation on exercise tolerance in a mouse model of sickle cell disease using the treadmill speed-duration relationship (critical speed). Mice with sickle cell disease provided with a dietary nitrate supplement had a critical speed not significantly different from healthy wild-type mice.


Assuntos
Anemia Falciforme , Beta vulgaris , Anemia Falciforme/tratamento farmacológico , Animais , Suplementos Nutricionais , Método Duplo-Cego , Tolerância ao Exercício , Humanos , Camundongos , Nitratos , Consumo de Oxigênio
2.
Drug Deliv ; 26(1): 147-157, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30822171

RESUMO

Hypoxic pulmonary vasoconstriction (HPV) is a well-characterized vascular response to low oxygen pressures and is involved in life-threatening conditions such as high-altitude pulmonary edema (HAPE) and pulmonary arterial hypertension (PAH). While the efficacy of oral therapies can be affected by drug metabolism, or dose-limiting systemic toxicity, inhaled treatment via pressured metered dose inhalers (pMDI) may be an effective, nontoxic, practical alternative. We hypothesized that a stable water-in-perfluorooctyl bromide (PFOB) emulsion that provides solubility in common pMDI propellants, engineered for intrapulmonary delivery of pulmonary vasodilators, reverses HPV during acute hypoxia (HX). Male Sprague Dawley rats received two 10-min bouts of HX (13% O2) with 20 min of room air and drug application between exposures. Treatment groups: intrapulmonary delivery (PUL) of (1) saline; (2) ambrisentan in saline (0.1 mg/kg); (3) empty emulsion; (4) emulsion encapsulating ambrisentan or sodium nitrite (NaNO2) (0.1 and 0.5 mg/kg each); and intravenous (5) ambrisentan (0.1 mg/kg) or (6) NaNO2 (0.5 mg/kg). Neither PUL of saline or empty emulsion, nor infusions of drugs prevented pulmonary artery pressure (PAP) elevation (32.6 ± 3.2, 31.5 ± 1.2, 29.3 ± 1.8, and 30.2 ± 2.5 mmHg, respectively). In contrast, PUL of aqueous ambrisentan and both drug emulsions reduced PAP by 20-30% during HX, compared to controls. IL6 expression in bronchoalveolar lavage fluid and whole lung 24 h post-PUL did not differ among cohorts. We demonstrate proof-of-concept for delivering pulmonary vasodilators via aerosolized water-in-PFOB emulsion. This concept opens a potentially feasible and effective route of treating pulmonary vascular pathologies via pMDI.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Emulsões/administração & dosagem , Fluorocarbonos/administração & dosagem , Hipertensão Pulmonar/tratamento farmacológico , Edema Pulmonar/tratamento farmacológico , Água/administração & dosagem , Animais , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Emulsões/metabolismo , Fluorocarbonos/metabolismo , Hipertensão Pulmonar/diagnóstico por imagem , Hipertensão Pulmonar/metabolismo , Masculino , Fenilpropionatos/administração & dosagem , Fenilpropionatos/metabolismo , Circulação Pulmonar/efeitos dos fármacos , Circulação Pulmonar/fisiologia , Edema Pulmonar/diagnóstico por imagem , Edema Pulmonar/metabolismo , Piridazinas/administração & dosagem , Piridazinas/metabolismo , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Água/metabolismo
3.
Nitric Oxide ; 76: 29-36, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29526566

RESUMO

Free hemoglobin (Hb) associated with hemolysis extravasates into vascular tissue and depletes nitric oxide (NO), which leads to impaired vascular function and could impair skeletal muscle metabolic control during exercise. We tested the hypothesis that: 1) free Hb would extravasate into skeletal muscle tissue, reducing the contracting skeletal muscle O2 delivery/O2 utilization ratio (microvascular PO2, PO2mv) to a similar extent as that observed following NO synthase (NOS) blockade, and 2) that the Hb scavenging protein haptoglobin (Hp) would prevent Hb extravasation and inhibit these skeletal muscle tissue effects. PO2mv was measured in eight rats (phosphorescence quenching) at rest and during 180 s of electrically induced (1-Hz) twitch spinotrapezius muscle contractions (experiment 1). A second group of seven rats was also used to investigate the effects of Hb + Hp (experiment 2). For both experiments, measurements were made: 1) during control conditions, 2) following a bolus infusion of either Hb (50 mg/kg) or Hb + Hp (50 mg/kg), and 3) following local superfusion of NG-nitro-l-arginine methyl ester (L-NAME; 10 mg/kg). Additional experiments were completed to visualize Hb extravasation into the muscular tissue using Click chemistry techniques. There were no significant differences in the PO2mv observed at rest for any condition in either experiment (p > 0.05 for all). In experiment 1, both Hb and L-NAME reduced the PO2mv significantly during the steady-state of muscle contractions when compared to control conditions with no differences between Hb and L-NAME (control: 24 ±â€¯1, Hb: 21 ±â€¯1, L-NAME: 20 ±â€¯1 mmHg, p < 0.05). In experiment 2, only L-NAME resulted in a significantly lower PO2mv during the steady-state of muscle contractions (control: 25 ± 1, Hb + Hp: 22 ± 2, L-NAME: 18 ± 1 mmHg, p < 0.05). Free Hb lowered the blood-myocyte O2 driving force to a level not significantly different from L-NAME. However, infusing Hb bound to Hp resulted in no significant differences in steady-state PO2mv during muscle contractions when compared to control. Surprisingly, we did not observe Hb accumulation in skeletal muscle tissue. Taken together these data suggests that free Hb impairs O2 delivery/utilization via a NO scavenging effect. Furthermore, the unchanged PO2mv steady-state observed following Hb + Hp further indicates that vascular compartmentalization of Hb by the scavenger protein haptoglobin may improve skeletal muscle metabolic control and potentially exercise tolerance in those afflicted with hemolytic diseases.


Assuntos
Hemoglobinas/metabolismo , Microvasos/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Oxigênio/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...