Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 9(1)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823455

RESUMO

We registered surface enhanced Raman scattering (SERS) spectra of the human lactoferrin molecules adsorbed on a silvered porous silicon (por-Si) from 10-6⁻10-18 M solutions. It was found that the por-Si template causes a negative surface potential of silver particles and their chemical resistivity to oxidation. These properties provided to attract positively charged lactoferrin molecules and prevent their interaction with metallic particles upon 473 nm laser excitation. The SERS spectra of lactoferrin adsorbed from 10-6 M solution were rather weak but a decrease of the concentration to 10-10 M led to an enormous growth of the SERS signal. This effect took place as oligomers of lactoferrin were broken down to monomeric units while its concentration was reduced. Oligomers are too large for a uniform overlap with electromagnetic field from silver particles. They cannot provide an intensive SERS signal from the top part of the molecules in contrast to monomers that can be completely covered by the electromagnetic field. The SERS spectra of lactoferrin at the 10-14 and 10-16 M concentrations were less intensive and started to change due to increasing contribution from the laser burned molecules. To prevent overheating the analyte molecules on the silvered por-Si were protected with graphene, which allowed the detection of lactoferrin adsorbed from the 10-18 M solution.


Assuntos
Técnicas Biossensoriais , Grafite/química , Lactoferrina/isolamento & purificação , Análise Espectral Raman/métodos , Humanos , Lactoferrina/química , Porosidade , Silício/química , Prata/química , Propriedades de Superfície
2.
Nanoscale Res Lett ; 7(1): 477, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22916840

RESUMO

The application of porous silicon as a template for the fabrication of nanosized copper objects is reported. Three different types of nanostructures were formed by displacement deposition of copper on porous silicon from hydrofluoric acid-based solutions of copper sulphate: (1) copper nanoparticles, (2) quasi-continuous copper films, and (3) free porous copper membranes. Managing the parameters of porous silicon (pore sizes, porosity), deposition time, and wettability of the copper sulphate solution has allowed to achieve such variety of the copper structures. Elemental and structural analyses of the obtained structures are presented. Young modulus measurements of the porous copper membrane have been carried out and its modest activity in surface enhanced Raman spectroscopy is declared.

3.
J Nanosci Nanotechnol ; 12(11): 8725-31, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23421274

RESUMO

Copper (II) sulfate was used as a source of copper to achieve uniform distribution of Cu particles deposited on porous silicon. Layers of the porous silicon were formed by electrochemical anodization of Si wafers in a mixture of HF, C3H7OH and deionized water. The well-known chemical displacement technique was modified to grow the copper particles of specific sizes. SEM and XRD analysis revealed that the outer surface of the porous silicon was covered with copper particles of the crystal orientation inherited from the planes of porous silicon skeleton. The copper crystals were found to have the cubic face centering elementary cell. In addition, the traces of Cu2O cubic primitive crystalline phases were identified. The dimensions of Cu particles were determined by the Feret's analysis of the SEM images. The sizes of the particles varied widely from a few to hundreds of nanometers. A phenomenological model of copper deposition was proposed.


Assuntos
Cobre/química , Cristalização/métodos , Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Silício/química , Adsorção , Simulação por Computador , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...