Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34883855

RESUMO

Many of the current research works are focused on the development of different control systems for commercial vehicles in order to reduce the incidence of risky driving situations, while also improving stability and comfort. Some works are focused on developing low-cost embedded systems with enough accuracy, reliability, and processing time. Previous research works have analyzed the integration of low-cost sensors in vehicles. These works demonstrated the feasibility of using these systems, although they indicate that this type of low-cost kit could present relevant delays and noise that must be compensated to improve the performance of the device. For this purpose, it is necessary design controllers for systems with input and output delays. The novelty of this work is the development of an LMI-Based H∞ output-feedback controller that takes into account the effect of delays in the network, both on the sensor side and the actuator side, on RSC (Roll Stability Control) systems. The controller is based on an active suspension with input and output delays, where the anti-roll moment is used as a control input and the roll rate as measured data, both with delays. This controller was compared with a controller system with a no-delay consideration that was experiencing similar delays. The comparison was made through simulation tests with a validated vehicle on the TruckSim® software.


Assuntos
Condução de Veículo , Simulação por Computador , Retroalimentação , Reprodutibilidade dos Testes
2.
Sensors (Basel) ; 18(9)2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30149589

RESUMO

An improper decision for the design, selection and adjustment of the components needed to control a vehicle could generate negative effects and discomfort to the driver, where pedals play a very important role. The aim of the study is to provide a first approach to develop an embedded monitoring device in order to evaluate the posture of the driver, the influence of the clutch pedal and to advise about the possible risk. With that purpose in mind, a testbed was designed and two different sets of tests were carried out. The first test collected information about the volunteers who were part of the experiment, like the applied force on the clutch pedal or the body measurements. The second test was carried out to provide new insight into this matter. One of the more significant findings to emerge from this study is that the force applied on the clutch pedal provides enough information to determine correct driver posture. For this reason, a system composed of a pedal force sensor and an acquisition/processing system can fulfil the requirements to create a healthcare system focused on driver posture.

3.
Sensors (Basel) ; 18(2)2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29415507

RESUMO

Nowadays, the current vehicles are incorporating control systems in order to improve their stability and handling. These control systems need to know the vehicle dynamics through the variables (lateral acceleration, roll rate, roll angle, sideslip angle, etc.) that are obtained or estimated from sensors. For this goal, it is necessary to mount on vehicles not only low-cost sensors, but also low-cost embedded systems, which allow acquiring data from sensors and executing the developed algorithms to estimate and to control with novel higher speed computing. All these devices have to be integrated in an adequate architecture with enough performance in terms of accuracy, reliability and processing time. In this article, an architecture to carry out the estimation and control of vehicle dynamics has been developed. This architecture was designed considering the basic principles of IoT and integrates low-cost sensors and embedded hardware for orchestrating the experiments. A comparison of two different low-cost systems in terms of accuracy, acquisition time and reliability has been done. Both devices have been compared with the VBOX device from Racelogic, which has been used as the ground truth. The comparison has been made from tests carried out in a real vehicle. The lateral acceleration and roll rate have been analyzed in order to quantify the error of these devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...