Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Headache ; 64(6): 652-662, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38700141

RESUMO

OBJECTIVE: Migraine, a prevalent and debilitating disease, involves complex pathophysiology possibly including inflammation and heightened pain sensitivity. The current study utilized the complete Freund's adjuvant (CFA) model of inflammation, with onabotulinumtoxinA (BoNT/A) as a treatment of interest due to its use in clinical migraine management. Using an animal model, the study sought to investigate the role of BoNT/A in modulating CFA-induced inflammation, alterations in pain sensitivity, and the regulation of calcitonin gene-related peptide (CGRP) release. Further, we aimed to assess the changes in SNAP-25 through western blot analysis to gain insights into the mechanistic action of BoNT/A. METHODS: BoNT/A or control was administered subcutaneously at the periorbital region of rats 3 days before the induction of inflammation using CFA. Periorbital mechanical sensitivity was assessed post-inflammation, and alterations in CGRP release were evaluated. Changes in SNAP-25 levels were determined using western blot analysis. RESULTS: Upon CFA-induced inflammation, there was a marked increase in periorbital mechanical sensitivity, with the inflammation side showing increased sensitivity compared to other periorbital areas. BoNT/A did decrease the withdrawal thresholds in the electronic von Frey test. Despite not being able to observe differences in pain thresholds or CGRP release, BoNT/A reduced baseline release under CFA inflamed conditions. Analysis of SNAP-25 levels in the trigeminal ganglion revealed both intact and cleaved forms that were notably elevated in BoNT/A-treated animals. These findings, derived from western blot analysis, suggest an effect on neurotransmitter release. CONCLUSION: Our investigation highlights the role of BoNT/A in reducing baseline CGRP in the context of inflammation and its involvement in SNAP-25 cleavage. In contrast, BoNT/A did not appear to alter facial pain sensitivity induced by inflammation, suggesting that mechanisms other than baseline CGRP could be implicated in the elevated thresholds in the CFA model.


Assuntos
Toxinas Botulínicas Tipo A , Peptídeo Relacionado com Gene de Calcitonina , Modelos Animais de Doenças , Inflamação , Transtornos de Enxaqueca , Ratos Sprague-Dawley , Proteína 25 Associada a Sinaptossoma , Animais , Toxinas Botulínicas Tipo A/farmacologia , Toxinas Botulínicas Tipo A/administração & dosagem , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Inflamação/tratamento farmacológico , Ratos , Masculino , Adjuvante de Freund , Dor/tratamento farmacológico , Limiar da Dor/efeitos dos fármacos , Fármacos Neuromusculares/farmacologia , Fármacos Neuromusculares/administração & dosagem
2.
J Headache Pain ; 24(1): 154, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37957603

RESUMO

BACKGROUND: Women are disproportionately affected by migraine, representing up to 75% of all migraine cases. This discrepancy has been proposed to be influenced by differences in hormone levels between the sexes. One such hormone is progesterone. Calcitonin gene-related peptide (CGRP) system is an important factor in migraine pathophysiology and could be influenced by circulating hormones. The purpose of this study was to investigate the distribution of progesterone and its receptor (PR) in the trigeminovascular system, and to examine the role of progesterone to modulate sensory neurotransmission. METHODS: Trigeminal ganglion (TG), hypothalamus, dura mater, and the basilar artery from male and female rats were carefully dissected. Expression of progesterone and PR proteins, and mRNA levels from TG and hypothalamus were analyzed by immunohistochemistry and real-time quantitative PCR. CGRP release from TG and dura mater were measured using an enzyme-linked immunosorbent assay. In addition, the vasomotor effect of progesterone on male and female basilar artery segments was investigated with myography. RESULTS: Progesterone and progesterone receptor -A (PR-A) immunoreactivity were found in TG. Progesterone was located predominantly in cell membranes and in Aδ-fibers, and PR-A was found in neuronal cytoplasm and nucleus, and in satellite glial cells. The number of positive progesterone immunoreactive cells in the TG was higher in female compared to male rats. The PR mRNA was expressed in both hypothalamus and TG; however, the PR expression level was significantly higher in the hypothalamus. Progesterone did not induce a significant change neither in basal level nor upon stimulated release of CGRP from dura mater or TG in male or female rats when compared to the vehicle control. However, pre-treated with 10 µM progesterone weakly enhanced capsaicin induced CGRP release observed in the dura mater of male rats. Similarly, in male basilar arteries, progesterone significantly amplified the dilation in response to capsaicin. CONCLUSIONS: In conclusion, these results highlight the potential for progesterone to modulate sensory neurotransmission and vascular responses in a complex manner, with effects varying by sex, tissue type, and the nature of the stimulus. Further investigations are needed to elucidate the underlying mechanisms and physiological implications of these findings.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Humanos , Ratos , Masculino , Feminino , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Ratos Sprague-Dawley , Progesterona/farmacologia , Progesterona/metabolismo , Capsaicina/farmacologia , Gânglio Trigeminal/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia
3.
Cells ; 11(15)2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35954288

RESUMO

Migraines constitute a common neurological and headache disorder affecting around 15% of the world's population. In addition to other mechanisms, neurogenic neuroinflammation has been proposed to play a part in migraine chronification, which includes peripheral and central sensitization. There is therefore considerable evidence suggesting that inflammation in the intracranial meninges could be a key element in addition to calcitonin gene-related peptide (CGRP), leading to sensitization of trigeminal meningeal nociceptors in migraines. There are several studies that have utilized this approach, with a strong focus on using inflammatory animal models. Data from these studies show that the inflammatory process involves sensitization of trigeminovascular afferent nerve terminals. Further, by applying a wide range of different pharmacological interventions, insight has been gained on the pathways involved. Importantly, we discuss how animal models should be used with care and that it is important to evaluate outcomes in the light of migraine pathology.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Inflamação , Meninges , Nociceptores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...