Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(12)2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36560613

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for the COVID-19 pandemic. From the onset of the pandemic, rapid antigen tests have quickly proved themselves to be an accurate and accessible diagnostic platform. The initial (and still most commonly used antigen tests) for COVID-19 diagnosis were constructed using monoclonal antibodies (mAbs) specific to severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid protein (NP). These mAbs are able to bind SARS-CoV-2 NP due to high homology between the two viruses. However, since first being identified in 2019, SARS-CoV-2 has continuously mutated, and a multitude of variants have appeared. These mutations have an elevated risk of leading to possible diagnostic escape when using tests produced with SARS-CoV-derived mAbs. Here, we established a library of 18 mAbs specific to SARS-CoV-2 NP and used two of these mAbs (1CV7 and 1CV14) to generate a prototype antigen-detection lateral flow immunoassay (LFI). A side-by-side analysis of the 1CV7/1CV14 LFI and the commercially available BinaxNOWTM COVID-19 Antigen CARD was performed. Results indicated the 1CV7/1CV14 LFI outperformed the BinaxNOWTM test in the detection of BA.2, BA.2.12.1, and BA.5 Omicron sub-variants when testing remnant RT-PCR positive patient nasopharyngeal swabs diluted in viral transport media.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Teste para COVID-19 , Pandemias , Sensibilidade e Especificidade , Imunoensaio/métodos , Antígenos , Anticorpos Monoclonais
2.
PLoS Negl Trop Dis ; 16(3): e0010287, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35320275

RESUMO

BACKGROUND: Yersinia pestis is the causative agent of plague, a zoonosis associated with small mammals. Plague is a severe disease, especially in the pneumonic and septicemic forms, where fatality rates approach 100% if left untreated. The bacterium is primarily transmitted via flea bite or through direct contact with an infected host. The 2017 plague outbreak in Madagascar resulted in more than 2,400 cases and was highlighted by an increased number of pneumonic infections. Standard diagnostics for plague include laboratory-based assays such as bacterial culture and serology, which are inadequate for administering immediate patient care for pneumonic and septicemic plague. PRINCIPAL FINDINGS: The goal of this study was to develop a sensitive rapid plague prototype that can detect all virulent strains of Y. pestis. Monoclonal antibodies (mAbs) were produced against two Y. pestis antigens, low-calcium response V (LcrV) and capsular fraction-1 (F1), and prototype lateral flow immunoassays (LFI) and enzyme-linked immunosorbent assays (ELISA) were constructed. The LFIs developed for the detection of LcrV and F1 had limits of detection (LOD) of roughly 1-2 ng/mL in surrogate clinical samples (antigens spiked into normal human sera). The optimized antigen-capture ELISAs produced LODs of 74 pg/mL for LcrV and 61 pg/mL for F1 when these antigens were spiked into buffer. A dual antigen LFI prototype comprised of two test lines was evaluated for the detection of both antigens in Y. pestis lysates. The dual format was also evaluated for specificity using a small panel of clinical near-neighbors and other Tier 1 bacterial Select Agents. CONCLUSIONS: LcrV is expressed by all virulent Y. pestis strains, but homologs produced by other Yersinia species can confound assay specificity. F1 is specific to Y. pestis but is not expressed by all virulent strains. Utilizing highly reactive mAbs, a dual-antigen detection (multiplexed) LFI was developed to capitalize on the diagnostic strengths of each target.


Assuntos
Peste , Yersinia pestis , Animais , Anticorpos Antibacterianos , Antígenos de Bactérias , Humanos , Imunoensaio/métodos , Mamíferos , Peste/microbiologia , Yersinia pestis/fisiologia , Zoonoses
3.
J Pharmacol Exp Ther ; 375(3): 469-477, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32980813

RESUMO

Monoclonal antibodies (mAbs) and vaccines have been proposed as medical countermeasures to treat opioid use disorder (OUD) and prevent opioid overdose. In contrast to current pharmacotherapies (e.g., methadone, buprenorphine, naltrexone, and naloxone) for OUD and overdose, which target brain opioid receptors, mAbs and vaccine-generated polyclonal antibodies sequester the target opioid in the serum and reduce drug distribution to the brain. Furthermore, mAbs offer several potential clinical benefits over approved medications, such as longer serum half-life, higher selectivity, reduced side effects, and no abuse liability. Using magnetic enrichment to isolate opioid-specific B cell lymphocytes prior to fusion with myeloma partners, this study identified a series of murine hybridoma cell lines expressing mAbs with high affinity for opioids of clinical interest, including oxycodone, heroin and its active metabolites, and fentanyl. In mice, passive immunization with lead mAbs against oxycodone, heroin, and fentanyl reduced drug-induced antinociception and the distribution of the target opioid to the brain. In mice and rats, mAb pretreatment reduced fentanyl-induced respiratory depression and bradycardia, two risk factors for opioid-related overdose fatality. Overall, these results support use of mAbs to counteract toxic effects of opioids and other chemical threats. SIGNIFICANCE STATEMENT: The incidence of fatal overdoses due to the widespread access to heroin, prescription opioids, and fentanyl suggests that current Food and Drug Administration-approved countermeasures are not sufficient to mitigate the opioid epidemic. Monoclonal antibodies (mAbs) may provide acute protection from overdose by binding to circulating opioids in serum. Use of mAbs prophylactically, or after exposure in combination with naloxone, may reduce hospitalization and increase survival.


Assuntos
Analgésicos Opioides/imunologia , Analgésicos Opioides/toxicidade , Anticorpos Monoclonais/imunologia , Comportamento Animal , Animais , Feminino , Imunização , Masculino , Camundongos , Ratos
4.
PLoS One ; 13(4): e0195308, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29630613

RESUMO

The CDC Tier 1 select agent Francisella tularensis is a small, Gram-negative bacterium and the causative agent of tularemia, a potentially life-threatening infection endemic in the United States, Europe and Asia. Currently, there is no licensed vaccine or rapid point-of-care diagnostic test for tularemia. The purpose of this research was to develop monoclonal antibodies (mAbs) specific to the F. tularensis surface-expressed lipopolysaccharide (LPS) for a potential use in a rapid diagnostic test. Our initial antigen capture ELISA was developed using murine IgG3 mAb 1A4. Due to the low sensitivity of the initial assay, IgG subclass switching, which is known to have an effect on the functional affinity of a mAb, was exploited for the purpose of enhancing assay sensitivity. The ELISA developed using the IgG1 or IgG2b mAbs from the subclass-switch family of 1A4 IgG3 yielded improved assay sensitivity. However, surface plasmon resonance (SPR) demonstrated that the functional affinity was decreased as a result of subclass switching. Further investigation using direct ELISA revealed the potential self-association of 1A4 IgG3, which could explain the higher functional affinity and higher assay background seen with this mAb. Additionally, the higher assay background was found to negatively affect assay sensitivity. Thus, enhancement of the assay sensitivity by subclass switching is likely due to the decrease in assay background, simply by avoiding the self-association of IgG3.


Assuntos
Francisella tularensis/imunologia , Imunoensaio/métodos , Switching de Imunoglobulina/imunologia , Imunoglobulina G/classificação , Imunoglobulina G/imunologia , Lipopolissacarídeos/imunologia , Tularemia/diagnóstico , Sequência de Aminoácidos , Animais , Anticorpos Antibacterianos/classificação , Anticorpos Antibacterianos/genética , Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/classificação , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos , Reações Antígeno-Anticorpo , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/estatística & dados numéricos , Feminino , Francisella tularensis/patogenicidade , Humanos , Imunoensaio/estatística & dados numéricos , Switching de Imunoglobulina/genética , Imunoglobulina G/genética , Testes Imunológicos/métodos , Testes Imunológicos/estatística & dados numéricos , Limite de Detecção , Lipopolissacarídeos/análise , Camundongos , Camundongos Endogâmicos BALB C , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície , Tularemia/imunologia , Tularemia/microbiologia
5.
Virulence ; 7(6): 691-701, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27096636

RESUMO

Immunoglobulin G3 (IgG3) is the predominant IgG subclass elicited in response to polysaccharide antigens in mice. This specific subclass has been shown to crosslink its fragment crystallizable (Fc) regions following binding to multivalent polysaccharides. Crosslinking leads to increased affinity through avidity, which theoretically should lead to more effective protection against bacteria and yeast displaying capsular polysaccharides on their surface. To investigate this further we have analyzed the binding characteristics of 2 IgG monoclonal antibody (mAb) subclass families that bind to the capsular polysaccharide (CPS) of Burkholderia pseudomallei. The first subclass family originated from an IgG3 hybridoma cell line (3C5); the second family was generated from an IgG1 cell line (2A5). When the Fc region of the 3C5 IgG3 is removed by proteolytic cleavage, the resulting F(ab')2 fragments exhibit decreased affinity compared to the full-length mAb. Similarly, when the parent IgG3 mAb is subclass-switched to IgG1, IgG2b, and IgG2a, all of these subclasses exhibit decreased affinity. This decrease in affinity is not seen when the 2A5 IgG1 mAb is switched to an IgG2b or IgG2a, strongly suggesting the drop in affinity is related to the IgG3 Fc region.


Assuntos
Afinidade de Anticorpos , Cápsulas Bacterianas/imunologia , Burkholderia pseudomallei/imunologia , Imunoglobulina G/imunologia , Receptores Fc/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/fisiologia , Burkholderia pseudomallei/fisiologia , Switching de Imunoglobulina , Camundongos , Ligação Proteica , Proteólise , Receptores Fc/deficiência
6.
PLoS Negl Trop Dis ; 8(3): e2727, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24651568

RESUMO

Burkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. Isolation of B. pseudomallei from clinical samples is the "gold standard" for the diagnosis of melioidosis; results can take 3-7 days to produce. Alternatively, antibody-based tests have low specificity due to a high percentage of seropositive individuals in endemic areas. There is a clear need to develop a rapid point-of-care antigen detection assay for the diagnosis of melioidosis. Previously, we employed In vivo Microbial Antigen Discovery (InMAD) to identify potential B. pseudomallei diagnostic biomarkers. The B. pseudomallei capsular polysaccharide (CPS) and numerous protein antigens were identified as potential candidates. Here, we describe the development of a diagnostic immunoassay based on the detection of CPS. Following production of a CPS-specific monoclonal antibody (mAb), an antigen-capture immunoassay was developed to determine the concentration of CPS within a panel of melioidosis patient serum and urine samples. The same mAb was used to produce a prototype Active Melioidosis Detect Lateral Flow Immunoassay (AMD LFI); the limit of detection of the LFI for CPS is comparable to the antigen-capture immunoassay (∼0.2 ng/ml). The analytical reactivity (inclusivity) of the AMD LFI was 98.7% (76/77) when tested against a large panel of B. pseudomallei isolates. Analytical specificity (cross-reactivity) testing determined that 97.2% of B. pseudomallei near neighbor species (35/36) were not reactive. The non-reactive B. pseudomallei strain and the reactive near neighbor strain can be explained through genetic sequence analysis. Importantly, we show the AMD LFI is capable of detecting CPS in a variety of patient samples. The LFI is currently being evaluated in Thailand and Australia; the focus is to optimize and validate testing procedures on melioidosis patient samples prior to initiation of a large, multisite pre-clinical evaluation.


Assuntos
Antígenos de Bactérias/imunologia , Burkholderia pseudomallei/isolamento & purificação , Cromatografia de Afinidade/métodos , Melioidose/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Polissacarídeos Bacterianos/imunologia , Anticorpos Antibacterianos , Anticorpos Monoclonais , Austrália , Burkholderia pseudomallei/imunologia , Humanos , Sensibilidade e Especificidade , Tailândia
7.
Chembiochem ; 14(12): 1485-93, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23873779

RESUMO

The interaction between the O-chain from the lipopolysaccharide from Burkholderia anthina and a lipopolysaccharide-specific monoclonal antibody (5D8) has been studied at high resolution by NMR spectroscopy. In particular, the 5D8-bound epitope of the saccharide entity has been unraveled by a combination of saturation transfer difference (STD) and transferred NOESY (tr-NOESY) experiments performed on the 5D8/polysaccharide complex. To dissect the fine details of the molecular recognition events, further experiments with simpler carbohydrate ligands were carried out. Thus, experiments were also performed with ad hoc synthesized trisaccharide and hexasaccharide O-antigen repeating units. By using this multidisciplinary approach (chemical synthesis, NMR spectroscopy and molecular dynamics simulation), determination of the binding epitope and the contribution to the binding of the sugar units composing the O-chain have been determined.


Assuntos
Anticorpos Monoclonais/química , Burkholderia/química , Lipopolissacarídeos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Antígenos O/química , Sequência de Carboidratos , Dissacarídeos/química , Simulação de Dinâmica Molecular , Trissacarídeos/química
8.
PLoS Pathog ; 9(4): e1003306, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637599

RESUMO

Bacterial capsules are common targets for antibody-mediated immunity. The capsule of Bacillus anthracis is unusual among capsules because it is composed of a polymer of poly-γ-d-glutamic acid (γdPGA). We previously generated murine IgG3 monoclonal antibodies (mAbs) to γdPGA that were protective in a murine model of pulmonary anthrax. IgG3 antibodies are characteristic of the murine response to polysaccharide antigens. The goal of the present study was to produce subclass switch variants of the γdPGA mAbs (IgG3 → IgG1 → IgG2b → IgG2a) and assess the contribution of subclass to antibody affinity and protection. Subclass switch antibodies had identical variable regions but differed in their heavy chains. The results showed that a switch from the protective IgG3 to IgG1, IgG2b or IgG2a was accompanied by i) a loss of protective activity ii) a change in mAb binding to the capsular matrix, and iii) a loss of affinity. These results identify a role for the heavy chain constant region in mAb binding. Hybrid mAbs were constructed in which the CH1, CH2 or CH3 heavy chain constant domains from a non-protective, low binding IgG2b mAb were swapped into the protective IgG3 mAb. The IgG3 mAb that contained the CH1 domain from IgG2b showed no loss of affinity or protection. In contrast, swapping the CH2 or CH3 domains from IgG2b into IgG3 produced a reduction in affinity and a loss of protection. These studies identify a role for the constant region of IgG heavy chains in affinity and protection against an encapsulated bacterial pathogen.


Assuntos
Antraz/imunologia , Bacillus anthracis/imunologia , Regiões Constantes de Imunoglobulina/imunologia , Imunoglobulina G/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Animais , Antraz/microbiologia , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos , Reações Antígeno-Anticorpo , Cápsulas Bacterianas/imunologia , Ácido Glutâmico/imunologia , Switching de Imunoglobulina , Imunoglobulina G/química , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Terciária de Proteína
9.
PLoS One ; 7(4): e35386, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22530013

RESUMO

Burkholderia pseudomallei is a Gram-negative bacillus that is the causative agent of melioidosis. The bacterium is inherently resistant to many antibiotics and mortality rates remain high in endemic areas. The lipopolysaccharide (LPS) and capsular polysaccharide (CPS) are two surface-associated antigens that contribute to pathogenesis. We previously developed two monoclonal antibodies (mAbs) specific to the CPS and LPS; the CPS mAb was shown to identify antigen in serum and urine from melioidosis patients. The goal of this study was to determine if passive immunization with CPS and LPS mAbs alone and in combination would protect mice from a lethal challenge with B. pseudomallei. Intranasal (i.n.) challenge experiments were performed with B. pseudomallei strains 1026b and K96423. Both mAbs provided significant protection when administered alone. A combination of mAbs was protective when low doses were administered. In addition, combination therapy provided a significant reduction in spleen colony forming units (cfu) compared to results when either the CPS or LPS mAbs were administered alone.


Assuntos
Anticorpos Monoclonais/imunologia , Burkholderia pseudomallei/imunologia , Imunização Passiva , Melioidose/prevenção & controle , Polissacarídeos/imunologia , Abscesso/patologia , Animais , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/imunologia , Epitopos , Feminino , Melioidose/mortalidade , Melioidose/patologia , Camundongos , Camundongos Endogâmicos BALB C , Baço/microbiologia , Baço/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...