Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 71(3): 874-892, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31378982

RESUMO

BACKGROUND AND AIMS: In nonalcoholic fatty liver disease (NAFLD), fibrosis is the most important factor contributing to NAFLD-associated morbidity and mortality. Prevention of progression and reduction in fibrosis are the main aims of treatment. Even in early stages of NAFLD, hepatic and systemic hyperammonemia is evident. This is due to reduced urea synthesis; and as ammonia is known to activate hepatic stellate cells, we hypothesized that ammonia may be involved in the progression of fibrosis in NAFLD. APPROACH AND RESULTS: In a high-fat, high-cholesterol diet-induced rodent model of NAFLD, we observed a progressive stepwise reduction in the expression and activity of urea cycle enzymes resulting in hyperammonemia, evidence of hepatic stellate cell activation, and progressive fibrosis. In primary, cultured hepatocytes and precision-cut liver slices we demonstrated increased gene expression of profibrogenic markers after lipid and/or ammonia exposure. Lowering of ammonia with the ammonia scavenger ornithine phenylacetate prevented hepatocyte cell death and significantly reduced the development of fibrosis both in vitro in the liver slices and in vivo in a rodent model. The prevention of fibrosis in the rodent model was associated with restoration of urea cycle enzyme activity and function, reduced hepatic ammonia, and markers of inflammation. CONCLUSIONS: The results of this study suggest that hepatic steatosis results in hyperammonemia, which is associated with progression of hepatic fibrosis. Reduction of ammonia levels prevented progression of fibrosis, providing a potential treatment for NAFLD.


Assuntos
Amônia/metabolismo , Cirrose Hepática/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos , Ratos Sprague-Dawley , Distúrbios Congênitos do Ciclo da Ureia/etiologia
2.
Hepatology ; 70(4): 1377-1391, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30963615

RESUMO

Precision cut liver slices (PCLSs) retain the structure and cellular composition of the native liver and represent an improved system to study liver fibrosis compared to two-dimensional mono- or co-cultures. The aim of this study was to develop a bioreactor system to increase the healthy life span of PCLSs and model fibrogenesis. PCLSs were generated from normal rat or human liver, or fibrotic rat liver, and cultured in our bioreactor. PCLS function was quantified by albumin enzyme-linked immunosorbent assay (ELISA). Fibrosis was induced in PCLSs by transforming growth factor beta 1 (TGFß1) and platelet-derived growth factor (PDGFßß) stimulation ± therapy. Fibrosis was assessed by gene expression, picrosirius red, and α-smooth muscle actin staining, hydroxyproline assay, and soluble ELISAs. Bioreactor-cultured PCLSs are viable, maintaining tissue structure, metabolic activity, and stable albumin secretion for up to 6 days under normoxic culture conditions. Conversely, standard static transwell-cultured PCLSs rapidly deteriorate, and albumin secretion is significantly impaired by 48 hours. TGFß1/PDGFßß stimulation of rat or human PCLSs induced fibrogenic gene expression, release of extracellular matrix proteins, activation of hepatic myofibroblasts, and histological fibrosis. Fibrogenesis slowly progresses over 6 days in cultured fibrotic rat PCLSs without exogenous challenge. Activin receptor-like kinase 5 (Alk5) inhibitor (Alk5i), nintedanib, and obeticholic acid therapy limited fibrogenesis in TGFß1/PDGFßß-stimulated PCLSs, and Alk5i blunted progression of fibrosis in fibrotic PCLS. Conclusion: We describe a bioreactor technology that maintains functional PCLS cultures for 6 days. Bioreactor-cultured PCLSs can be successfully used to model fibrogenesis and demonstrate efficacy of antifibrotic therapies.


Assuntos
Reatores Biológicos , Regulação da Expressão Gênica , Cirrose Hepática/genética , Cirrose Hepática/patologia , Técnicas de Cultura de Tecidos/métodos , Animais , Biópsia por Agulha , Técnicas de Cocultura/métodos , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...