Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Robot AI ; 10: 1209202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469630

RESUMO

Over the years, efforts in bioinspired soft robotics have led to mobile systems that emulate features of natural animal locomotion. This includes combining mechanisms from multiple organisms to further improve movement. In this work, we seek to improve locomotion in soft, amphibious robots by combining two independent mechanisms: sea star locomotion gait and gecko adhesion. Specifically, we present a sea star-inspired robot with a gecko-inspired adhesive surface that is able to crawl on a variety of surfaces. It is composed of soft and stretchable elastomer and has five limbs that are powered with pneumatic actuation. The gecko-inspired adhesion provides additional grip on wet and dry surfaces, thus enabling the robot to climb on 25° slopes and hold on statically to 51° slopes.

2.
Adv Sci (Weinh) ; 10(26): e2301737, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37394730

RESUMO

Real-time onboard state monitoring and estimation of a battery over its lifetime is indispensable for the safe and durable operation of battery-powered devices. In this study, a methodology to predict the entire constant-current cycling curve with limited input information that can be collected in a short period of time is developed. A total of 10 066 charge curves of LiNiO2 -based batteries at a constant C-rate are collected. With the combination of a feature extraction step and a multiple linear regression step, the method can accurately predict an entire battery charge curve with an error of < 2% using only 10% of the charge curve as the input information. The method is further validated across other battery chemistries (LiCoO2 -based) using open-access datasets. The prediction error of the charge curves for the LiCoO2 -based battery is around 2% with only 5% of the charge curve as the input information, indicating the generalization of the developed methodology for predicting battery cycling curves. The developed method paves the way for fast onboard health status monitoring and estimation for batteries during practical applications.

3.
MethodsX ; 8: 101562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754824

RESUMO

Operando experiments attract increasing attention in lithium-ion batteries (LIBs) studies for their ability to capture non-equilibrium and fast-transient processes during electrochemical reactions. They provide valuable information and mechanisms that cannot be obtained from ex-situ methods. Designing a suitable and reliable electrochemical cell is the first crucial step for most operando studies. A poorly designed in-situ cell introduces artifacts into the data and might lead to misleading results. Even though many in-situ cells have been designed and applied for operando studies, designing a reliable cell is not trivial, especially for long-term cycling experiments. This study introduces the steps and details of a specific type of in-situ cell, i.e., modified coin cell, that can be applied reliably in various operando experiments. The reliability of the modified coin cell is demonstrated by comparing its electrochemical performance with the standard coin cell. The modified coin cell is then applied in various operando experiments, including operando transmission X-ray microscopy and operando synchrotron X-ray scattering.•Sealing the cell casing window with metal films maintains the overall electrochemical performance of electrodes.•Depending on the operando experiment, the type of the coin cell and the window shape must be selected carefully.

4.
Sensors (Basel) ; 21(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34640658

RESUMO

A longstanding challenge for accurate sensing of biomolecules such as proteins concerns specifically detecting a target analyte in a complex sample (e.g., food) without suffering from nonspecific binding or interactions from the target itself or other analytes present in the sample. Every sensor suffers from this fundamental drawback, which limits its sensitivity, specificity, and longevity. Existing efforts to improve signal-to-noise ratio involve introducing additional steps to reduce nonspecific binding, which increases the cost of the sensor. Conducting polymer-based chemiresistive biosensors can be mechanically flexible, are inexpensive, label-free, and capable of detecting specific biomolecules in complex samples without purification steps, making them very versatile. In this paper, a poly (3,4-ethylenedioxyphene) (PEDOT) and poly (3-thiopheneethanol) (3TE) interpenetrating network on polypropylene-cellulose fabric is used as a platform for a chemiresistive biosensor, and the specific and nonspecific binding events are studied using the Biotin/Avidin and Gliadin/G12-specific complementary binding pairs. We observed that specific binding between these pairs results in a negative ΔR with the addition of the analyte and this response increases with increasing analyte concentration. Nonspecific binding was found to have the opposite response, a positive ΔR upon the addition of analyte was seen in nonspecific binding cases. We further demonstrate the ability of the sensor to detect a targeted protein in a dual-protein analyte solution. The machine-learning classifier, random forest, predicted the presence of Biotin with 75% accuracy in dual-analyte solutions. This capability of distinguishing between specific and nonspecific binding can be a step towards solving the problem of false positives or false negatives to which all biosensors are susceptible.


Assuntos
Técnicas Biossensoriais , Polímeros , Biotina , Proteínas
5.
ACS Appl Mater Interfaces ; 13(8): 9919-9931, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33616383

RESUMO

Electrode-electrolyte interfaces (EEIs) affect the rate capability, cycling stability, and thermal safety of lithium-ion batteries (LIBs). Designing stable EEIs with fast Li+ transport is crucial for developing advanced LIBs. Here, we study Li+ kinetics at EEIs tailored by three nanoscale polymer thin films via chemical vapor deposition (CVD) polymerization. Small binding energy with Li+ and the presence of sufficient binding sites for Li+ allow poly(3,4-ethylenedioxythiophene) (PEDOT) based artificial coatings to enable fast charging of LiCoO2. Operando synchrotron X-ray diffraction experiments suggest that the superior Li+ transport property in PEDOT further improves current homogeneity in the LiCoO2 electrode during cycling. PEDOT also forms chemical bonds with LiCoO2, which reduces Co dissolution and inhibits electrolyte decomposition. As a result, the LiCoO2 4.5 V cycle life tested at C/2 increases over 1700% after PEDOT coating. In comparison, the other two polymer coatings show undesirable effects on LiCoO2 performance. These insights provide us with rules for selecting/designing polymers to engineer EEIs in advanced LIBs.

6.
J Phys Condens Matter ; 31(22): 225702, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-30812016

RESUMO

The dielectric anisotropy of Al2O3 is studied here by characterizing W-band (75-110 GHz) complex permittivity of four different orientations of sapphire (Al2O3 single crystals). This was done using free-space, focused beam methods. Dielectric polarizability ([Formula: see text]) of these orientations is then calculated and these values are related to their complex permittivity. Based on this relationship, a framework is developed for rapid and straightforward estimation of dielectric anisotropy using a known crystal structure and a dielectric permittivity measurement performed on one orientation of the material. This framework can be applied to other materials with dielectric anisotropy (e.g. SnO2, LiGaO2) to predict permittivity for different orientations, enabling rapid design of high-frequency systems (e.g. radomes, electromagnetic windows). These permittivity measurements were also used to determine the dominant polarization mechanisms leading to dielectric anisotropy of Al2O3 in the W-band; electronic and ionic polarization orthogonal to the direction of the focused beam.

7.
ACS Appl Mater Interfaces ; 10(32): 27063-27073, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30040379

RESUMO

Surface engineering is a critical technique for improving the performance of lithium-ion batteries (LIBs). Here, we introduce a novel vapor-based technique, namely, chemical vapor deposition polymerization, that can engineer nanoscale polymer thin films with controllable thickness and composition on the surface of battery electrodes. This technique enables us to, for the first time, systematically compare the effects of a conducting poly(3,4-ethylenedioxythiophene) (PEDOT) polymer and an insulating poly(divinylbenzene) (PDVB) polymer on the performance of a LiMn2O4 electrode in LIBs. Our results show that conducting PEDOT coatings improve both the rate and the cycling performance of LiMn2O4 electrodes, whereas insulating PDVB coatings have little effect on these performances. The PEDOT coating increases 10 C rate capacity by 83% at 25 °C (from 23 to 42 mA h/g) and by 30% at 50 °C (from 64 to 83 mA h/g). Furthermore, the PEDOT coating extends the high-temperature (50 °C) cycling life of LiMn2O4 by over 60%. A model is developed, which can precisely describe the capacity degradation exhibited by the different types of cells, based on the aging mechanisms of Mn dissolution and solid-electrolyte interphase growth. Results from X-ray photoelectron spectroscopy suggest that chemical or coordination bonds form between Mn in LiMn2O4 and O and S in the PEDOT film. These bonds stabilize the surface of LiMn2O4 and thus improve the cycling performance. In contrast, no bonds form between Mn and the elements in the PDVB film. We further demonstrate that this vapor-based technique can be extended to other cathodes for advanced LIBs.

8.
RSC Adv ; 8(35): 19348-19352, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35541006

RESUMO

Oxidative chemical vapor deposition (oCVD) is a versatile technique that can simultaneously tailor properties (e.g., electrical, thermal conductivity) and morphology of polymer films at the nanoscale. In this work, we report the thermal conductivity of nanoscale oCVD grown poly(3,4-ethylenedioxythiophene) (PEDOT) films for the first time. Measurements as low as 0.16 W m-1 K-1 are obtained at room temperature for PEDOT films with thicknesses ranging from 50-100 nm. These values are lower than those for solution processed PEDOT films doped with the solubilizing agent PSS (polystyrene sulfonate). The thermal conductivity of oCVD grown PEDOT films show no clear dependence on electrical conductivity, which ranges from 1 S cm-1 to 30 S cm-1. It is suspected that at these electrical conductivities, the electronic contribution to the thermal conductivity is extremely small and that phonon transport is dominant. Our findings suggest that CVD polymerization is a promising route towards engineering polymer films that combine low thermal conductivity with relatively high electrical conductivity values.

9.
Macromol Rapid Commun ; 37(5): 446-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26785633

RESUMO

A group of crosslinked cyclic siloxane (Si-O) and silazane (Si-N) polymers are synthesized via solvent-free initiated chemical vapor deposition (iCVD). Notably, this is the first report of cyclic polysilazanes synthesized via the gas-phase iCVD method. The deposited nanoscale thin films are thermally stable and chemically inert. By iCVD, they can uniformly and conformally cover nonplanar surfaces having complex geometry. Although polysiloxanes are traditionally utilized as dielectric materials and insulators, our research shows these cyclic organosilicon polymers can conduct lithium ions (Li(+) ) at room temperature. The conformal coating and the room temperature ionic conductivity make these cyclic organosilicon polymers attractive for use as thin-film electrolytes in solid-state batteries. Also, their synthesis process and properties have been systemically studied and discussed.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Nanoestruturas/química , Polímeros/síntese química , Siloxanas/síntese química , Cátions Monovalentes , Condutividade Elétrica , Teste de Materiais , Transição de Fase , Polimerização , Temperatura , Volatilização
10.
Phys Chem Chem Phys ; 17(16): 10640-7, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25804286

RESUMO

Carboxylated oligothiophenes were evaluated as interfacial modifiers between the organic poly(3-hexylthiophene) (P3HT) and inorganic TiO2 layers in bilayer hybrid polymer solar cells. Carboxylated oligothiophenes can be isolated using conventional purification techniques resulting in pure, monodisperse molecules with 100% carboxylation. Device prototypes using carboxylated oligothiophenes as interfacial modifiers showed improved performance in the open-circuit voltage and fill factor over devices using unmodified oligothiophenes as interfacial modifiers. X-ray photoelectron spectroscopy (XPS) studies supported the idea that interface layer adhesion was improved by functionalizing oligothiophenes with a carboxyl moiety. Wide-field fluorescence images revealed that devices made using carboxylated oligothiophenes had fewer aggregates in the P3HT layers atop the modified TiO2 surface. Hysteresis seen in the fluorescence intensity as a function of applied bias, obtained from In-Device Fluorescence Voltage Spectroscopy (ID-FVS), was found to be a diagnostic criterion of the quality of the hybrid interface modification. The best interfaces were found using oligothiophenes functionalized with carboxylates, which created smooth layers on TiO2, and showed no hysteresis, suggesting elimination of interfacial charge traps. However, this hysteresis could be re-introduced by increasing the scan rate of the applied bias, suggesting that smooth P3HT layers created by carboxylated oligothiophene interface modifiers were necessary but not sufficient for sustaining improved photovoltaic properties especially during long-term device operation.

11.
Sci Rep ; 2: 1003, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23256037

RESUMO

Thin films find a variety of technological applications. Assembling thin films from atoms in the liquid phase is intrinsically a non-equilibrium phenomenon, controlled by the competition between thermodynamics and kinetics. We demonstrate here that microwave energy can assist in assembling atoms into thin films directly on a substrate at significantly lower temperatures than conventional processes, potentially enabling plastic-based electronics. Both experimental and electromagnetic simulation results show microwave fields can selectively interact with a conducting layer on the substrate despite the discrepancy between the substrate size and the microwave wavelength. The microwave interaction leads to localized energy absorption, heating, and subsequent nucleation and growth of the desired films. Electromagnetic simulations show remarkable agreement with experiments and are employed to understand the physics of the microwave interaction and identify conditions to improve uniformity of the films. The films can be patterned and grown on various substrates, enabling their use in widespread applications.

12.
ACS Appl Mater Interfaces ; 3(5): 1492-501, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21449611

RESUMO

It is known that atmospheric oxygen is essential for realizing the photovoltaic properties of P3HT-TiO2-based hybrid polymer solar cells because oxygen vacancies created in TiO2 can become recombination sites for charge carriers, causing photovoltaic properties like open-circuit voltage (V(oc)) to decline quickly in an inert atmosphere. We demonstrate here that using an annealed Cu layer as hole collecting electrode results in a remarkably stable hybrid solar cell that maintains its photovoltaic parameters during 1 h of continuous testing in an inert atmosphere. An analysis of the data from photovoltaic device performance tests and X-ray photoelectron spectroscopy (XPS) attributes this improvement to the tendency of Cu to form sulfide-like complexes with the S atoms on P3HT, thereby inducing a chemically driven vertical segregation of P3HT toward the hole-collecting metal electrode. Additionally, XPS depth profiling analysis shows that Cu atoms can diffuse up to the TiO2 layer and assist in filling up oxygen vacancies on the TiO2 surface, thus eliminating defects that can act as donors of free electrons and degrade photovoltaic performance in an inert atmosphere. We analyze these improvements by examining in situ the effect of Cu on the P3HT and TiO2 layers and on the organic-inorganic interface formed between them inside a hybrid solar cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...