Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 126(39): 6834-6848, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36154020

RESUMO

The transition-metal complex Mo(PH3)5H2 is known to exist in three possible isomeric forms, including a nonclassical, σ-bound dihydrogen complex and two classical dihydride isomers. As such, it has served as a model complex for the energies of conversion between these limiting structural regimes. In the present study, ab initio molecular dynamics computer simulations, combined with enhanced sampling techniques, were utilized to directly assess the degree of motion and isomerization of the dihydrogen/dihydride moieties in this complex. Ligand rotations (for both the H2 unit and the phosphine units) were found to be dominant in the low-temperature (298 K) regime, and the classical thermodynamic distribution showed no probability of thermally accessing dihydride forms, although unrestrained molecular dynamics trajectories showed fleeting configurations outside of the σ-H2 configuration. Simulations at higher temperatures surprisingly revealed new tri-hydride isomers that are energetically competitive with the σ-H2 and cis-/trans-dihydride isomers. Low-energy pathways to hydrogen/hydride transfer and phosphine dissociation were readily accessible, which considerably expands the known isomeric flexibility of this complex.

2.
J Phys Chem A ; 123(30): 6547-6563, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31268324

RESUMO

The 1,3-diaza-2,4-diborobutane (NBNB) molecule serves as the smallest model complex of an intramolecular "dihydrogen bond," which involves a nominally hydrogen-bonding interaction between amine and borane hydrogen atoms. In the present study, the role of this dihydrogen bond in influencing the inherent molecular dynamics of NBNB is investigated computationally with ab initio molecular dynamics and path integral molecular dynamics techniques, as well as vibrational spectra analysis and static quantum chemistry computations. These simulations indicate that the dihydrogen-bonding interaction impacts both the high- and low-frequency motions of the molecule, with the dominant motions involving low-frequency backbone isomerization and terminal amine rotation. Geometric isotope effects were found to be modest. The analysis also addresses the paradoxical fostering of amine rotation via a relatively strong dihydrogen bond interaction. Electrostatic and geometric factors most directly explain this effect, and although some orbital evidence was found for a small covalent component of this interaction, the dynamics and electronic structure suggest that electrostatic contributions are the controlling factors for molecular motion in NBNB.

3.
J Phys Chem A ; 120(28): 5598-608, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27351636

RESUMO

Because of both experimental and computational challenges, protonated tryptophan has remained the last aromatic amino acid for which the intrinsic structures of low-energy conformers have not been unambiguously solved. The IR-IR-UV hole-burning spectroscopy technique has been applied to overcome the limitations of the commonly used IR-UV double resonance technique and to measure conformer-specific vibrational spectra of TrpH(+), cooled to T = 10 K. Anharmonic ab initio vibrational spectroscopy simulations unambiguously assign the dominant conformers to the two lowest-energy geometries from benchmark coupled-cluster structure computations. The match between experimental and ab initio spectra provides an unbiased validation of the calculated structures of the two experimentally observed conformers of this benchmark ion. Furthermore, the vibrational spectra provide conformer-specific signatures of the stabilizing interactions, including hydrogen bonding and an intramolecular cation-π interaction.


Assuntos
Prótons , Teoria Quântica , Triptofano/química , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...