Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Justice ; 58(6): 405-414, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30446069

RESUMO

Fingermarks are a key form of physical evidence for identifying persons of interest and linking them to the scene of a crime. Visualising latent (hidden) fingermarks can be difficult and the correct choice of techniques is essential to develop and preserve any fingermarks or other (e.g. DNA) evidence that might be present. Metal surfaces (stainless steel in particular) have proven to be challenging substrates from which to reliably obtain fingermarks. This is a great cause for concern among police forces around the globe as many of the firearms, knives and other metal weapons used in violent crime are potentially valuable sources of fingermark evidence. In this study, a highly sensitive and non-destructive surface science technique called time of flight secondary ion mass spectroscopy (ToF-SIMS) was used to image fingermarks on metal surfaces. This technique was compared to a conventional superglue based fuming technique that was accompanied by a series of contrast enhancing dyes (basic yellow 40 (BY40), crystal violet (CV) and sudan black (SB)) on three different metal surfaces. The conventional techniques showed little to no evidence of fingermarks being present on the metal surfaces after a few days. However, ToF-SIMS revealed fingermarks on the same and similar substrates with an exceptional level of detail. The ToF-SIMS images demonstrated clear ridge definition as well as detail about sweat pore position and shape. All structures were found to persist for over 26 days after deposition when the samples were stored under ambient conditions.


Assuntos
Dermatoglifia , Metais , Espectrometria de Massa de Íon Secundário , Humanos , Propriedades de Superfície , Fatores de Tempo
2.
J Biomech Eng ; 136(8)2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24828684

RESUMO

Vascularized biological tissue has been shown to increase in stiffness with increased perfusion pressure. The interaction between blood in the vasculature and other tissue components can be modeled with a poroelastic, biphasic approach. The ability of this model to reproduce the pressure-driven stiffening behavior exhibited by some tissues depends on the choice of the mechanical constitutive relation, defined by the Helmholtz free energy density of the skeleton. We analyzed the behavior of a number of isotropic poroelastic constitutive relations by applying a swelling pressure, followed by homogeneous uniaxial or simple-shear deformation. Our results demonstrate that a strain-stiffening constitutive relation is required for a material to show pressure-driven stiffening, and that the strain-stiffening terms must be volume-dependent.


Assuntos
Circulação Sanguínea , Elasticidade , Modelos Biológicos , Pressão , Porosidade , Estresse Mecânico
3.
Prog Biophys Mol Biol ; 107(1): 32-47, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21762717

RESUMO

The VPH/Physiome Project is developing the model encoding standards CellML (cellml.org) and FieldML (fieldml.org) as well as web-accessible model repositories based on these standards (models.physiome.org). Freely available open source computational modelling software is also being developed to solve the partial differential equations described by the models and to visualise results. The OpenCMISS code (opencmiss.org), described here, has been developed by the authors over the last six years to replace the CMISS code that has supported a number of organ system Physiome projects. OpenCMISS is designed to encompass multiple sets of physical equations and to link subcellular and tissue-level biophysical processes into organ-level processes. In the Heart Physiome project, for example, the large deformation mechanics of the myocardial wall need to be coupled to both ventricular flow and embedded coronary flow, and the reaction-diffusion equations that govern the propagation of electrical waves through myocardial tissue need to be coupled with equations that describe the ion channel currents that flow through the cardiac cell membranes. In this paper we discuss the design principles and distributed memory architecture behind the OpenCMISS code. We also discuss the design of the interfaces that link the sets of physical equations across common boundaries (such as fluid-structure coupling), or between spatial fields over the same domain (such as coupled electromechanics), and the concepts behind CellML and FieldML that are embodied in the OpenCMISS data structures. We show how all of these provide a flexible infrastructure for combining models developed across the VPH/Physiome community.


Assuntos
Fenômenos Biofísicos , Simulação por Computador , Fenômenos Fisiológicos , Software , Elasticidade , Fenômenos Eletrofisiológicos , Humanos , Modelos Biológicos
4.
BMC Bioinformatics ; 11: 178, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20377909

RESUMO

BACKGROUND: CellML is an XML based language for representing mathematical models, in a machine-independent form which is suitable for their exchange between different authors, and for archival in a model repository. Allowing for the exchange and archival of models in a computer readable form is a key strategic goal in bioinformatics, because of the associated improvements in scientific record accuracy, the faster iterative process of scientific development, and the ability to combine models into large integrative models.However, for CellML models to be useful, tools which can process them correctly are needed. Due to some of the more complex features present in CellML models, such as imports, developing code ab initio to correctly process models can be an onerous task. For this reason, there is a clear and pressing need for an application programming interface (API), and a good implementation of that API, upon which tools can base their support for CellML. RESULTS: We developed an API which allows the information in CellML models to be retrieved and/or modified. We also developed a series of optional extension APIs, for tasks such as simplifying the handling of connections between variables, dealing with physical units, validating models, and translating models into different procedural languages.We have also provided a Free/Open Source implementation of this application programming interface, optimised to achieve good performance. CONCLUSIONS: Tools have been developed using the API which are mature enough for widespread use. The API has the potential to accelerate the development of additional tools capable of processing CellML, and ultimately lead to an increased level of sharing of mathematical model descriptions.


Assuntos
Biologia Computacional/métodos , Software , Algoritmos , Bases de Dados Factuais , Armazenamento e Recuperação da Informação , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...