Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucl Med Biol ; 134-135: 108918, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38772123

RESUMO

CONTEXT: Hypoxia within the tumor microenvironment is a critical factor influencing the efficacy of immunotherapy, including immune checkpoint inhibition. Insufficient oxygen supply, characteristic of hypoxia, has been recognized as a central determinant in the progression of various cancers. The reemergence of evofosfamide, a hypoxia-activated prodrug, as a potential treatment strategy has sparked interest in addressing the role of hypoxia in immunotherapy response. This investigation sought to understand the kinetics and heterogeneity of tumor hypoxia and their implications in affecting responses to immunotherapeutic interventions with and without evofosfamide. PURPOSE: This study aimed to investigate the influence of hypoxia on immune checkpoint inhibition, evofosfamide monotherapy, and their combination on colorectal cancer (CRC). Employing positron emission tomography (PET) imaging, we developed novel analytical methods to quantify and characterize tumor hypoxia severity and distribution. PROCEDURES: Murine CRC models were longitudinally imaged with [18F]-fluoromisonidazole (FMISO)-PET to quantify tumor hypoxia during checkpoint blockade (anti-CTLA-4 + and anti-PD1 +/- evofosfamide). Metrics including maximum tumor [18F]FMISO uptake (FMISOmax) and mean tumor [18F]FMISO uptake (FMISOmean) were quantified and compared with normal muscle tissue (average muscle FMISO uptake (mAvg) and muscle standard deviation (mSD)). Histogram distributions were used to evaluate heterogeneity of tumor hypoxia. FINDINGS: Severe hypoxia significantly impeded immunotherapy effectiveness consistent with an immunosuppressive microenvironment. Hypoxia-specific PET imaging revealed a striking degree of spatial heterogeneity in tumor hypoxia, with some regions exhibiting significantly more severe hypoxia than others. The study identified FMISOmax as a robust predictor of immunotherapy response, emphasizing the impact of localized severe hypoxia on tumor volume control during therapy. Interestingly, evofosfamide did not directly reduce hypoxia but markedly improved the response to immunotherapy, uncovering an alternative mechanism for its efficacy. CONCLUSIONS: These results enhance our comprehension of the interplay between hypoxia and immune checkpoint inhibition within the tumor microenvironment, offering crucial insights for the development of personalized cancer treatment strategies. Non-invasive hypoxia quantification through molecular imaging evaluating hypoxia severity may be an effective tool in guiding treatment planning, predicting therapy response, and ultimately improving patient outcomes across diverse cancer types and tumor microenvironments. It sets the stage for the translation of these findings into clinical practice, facilitating the optimization of immunotherapy regimens by addressing tumor hypoxia and thereby enhancing the efficacy of cancer treatments.


Assuntos
Inibidores de Checkpoint Imunológico , Misonidazol , Tomografia por Emissão de Pósitrons , Hipóxia Tumoral , Animais , Tomografia por Emissão de Pósitrons/métodos , Camundongos , Misonidazol/análogos & derivados , Hipóxia Tumoral/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/terapia , Feminino , Microambiente Tumoral
2.
Clin Cancer Res ; 28(2): 327-337, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34615724

RESUMO

PURPOSE: Hypoxia is a common characteristic of many tumor microenvironments, and it has been shown to promote suppression of antitumor immunity. Despite strong biological rationale, longitudinal correlation of hypoxia and response to immunotherapy has not been investigated. EXPERIMENTAL DESIGN: In this study, we probed the tumor and its surrounding microenvironment with 18F-FMISO PET imaging to noninvasively quantify tumor hypoxia in vivo prior to and during PD-1 and CTLA-4 checkpoint blockade in preclinical models of breast and colon cancer. RESULTS: Longitudinal imaging identified hypoxia as an early predictive biomarker of therapeutic response (prior to anatomic changes in tumor volume) with a decreasing standard uptake value (SUV) ratio in tumors that effectively respond to therapy. PET signal correlated with ex vivo markers of tumor immune response including cytokines (IFNγ, GZMB, and TNF), damage-associated molecular pattern receptors (TLR2/4), and immune cell populations (macrophages, dendritic cells, and cytotoxic T cells). Responding tumors were marked by increased inflammation that were spatially distinct from hypoxic regions, providing a mechanistic understanding of the immune signaling pathways activated. To exploit image-guided combination therapy, hypoxia signal from PET imaging was used to guide the addition of a hypoxia targeted treatment to nonresponsive tumors, which ultimately provided therapeutic synergy and rescued response as determined by longitudinal changes in tumor volume. CONCLUSIONS: The results generated from this work provide an immediately translatable paradigm for measuring and targeting hypoxia to increase response to immune checkpoint therapy and using hypoxia imaging to guide combinatory therapies.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Antígeno CTLA-4 , Hipóxia Celular , Humanos , Hipóxia , Misonidazol/análogos & derivados , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Nitroimidazóis , Mostardas de Fosforamida , Tomografia por Emissão de Pósitrons/métodos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...