Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 12(10): 6184-6204, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34745729

RESUMO

We have trained generative adversarial networks (GANs) to mimic both the effect of temporal averaging and of singular value decomposition (SVD) denoising. This effectively removes noise and acquisition artifacts and improves signal-to-noise ratio (SNR) in both the radio-frequency (RF) data and in the corresponding photoacoustic reconstructions. The method allows a single frame acquisition instead of averaging multiple frames, reducing scan time and total laser dose significantly. We have tested this method on experimental data, and quantified the improvement over using either SVD denoising or frame averaging individually for both the RF data and the reconstructed images. We achieve a mean squared error (MSE) of 0.05%, structural similarity index measure (SSIM) of 0.78, and a feature similarity index measure (FSIM) of 0.85 compared to our ground-truth RF results. In the subsequent reconstructions using the denoised data we achieve a MSE of 0.05%, SSIM of 0.80, and a FSIM of 0.80 compared to our ground-truth reconstructions.

2.
J Biomed Opt ; 25(11)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33215477

RESUMO

SIGNIFICANCE: Photoacoustic tomography (PAT) is a promising emergent modality for the screening and staging of breast cancer. To minimize barriers to clinical translation, it is common to develop PAT systems based upon existing ultrasound hardware, which can entail significant design challenges in terms of light delivery. This often results in inherently non-uniform fluence within the tissue and should be accounted for during image reconstruction. AIM: We aim to integrate PAT into an automated breast ultrasound scanner with minimal change to the existing system. APPROACH: We designed and implemented an illuminator that directs spatially non-uniform light to the tissue near the acquisition plane of the imaging array. We developed a graphics processing unit-accelerated reconstruction method, which accounts for this illumination geometry by modeling the structure of the light in the sample. We quantified the performance of this system using a custom, modular photoacoustic phantom and graphite rods embedded in chicken breast tissue. RESULTS: Our illuminator provides a fluence of 2.5 mJ cm - 2 at the tissue surface, which was sufficient to attain a signal-to-noise ratio (SNR) of 8 dB at 2 cm in chicken breast tissue and image 0.25-mm features at depths of up to 3 cm in a medium with moderate optical scattering. Our reconstruction scheme is 200 × faster than a CPU implementation; it provides a 25% increase in SNR at 2 cm in chicken breast tissue and lowers image error by an average of 31% at imaging depths >1.5 cm compared with a method that does not account for the inhomogeneity of the illumination or the transducer directivity. CONCLUSIONS: A fan-shaped illumination geometry is feasible for PAT; however, it is important to account for non-uniform fluence in illumination scenarios such as this. Future work will focus on increasing fluence and further optimizing the ultrasound hardware to improve SNR and overall image quality.


Assuntos
Técnicas Fotoacústicas , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X , Ultrassonografia Mamária
3.
Neuroinformatics ; 17(3): 373-389, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30406865

RESUMO

Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. Detailed studies of the microglial response after TBI require high throughput quantification of changes in microglial count and morphology in histological sections throughout the brain. In this paper, we present a fully automated end-to-end system that is capable of assessing microglial activation in white matter regions on whole slide images of Iba1 stained sections. Our approach involves the division of the full brain slides into smaller image patches that are subsequently automatically classified into white and grey matter sections. On the patches classified as white matter, we jointly apply functional minimization methods and deep learning classification to identify Iba1-immunopositive microglia. Detected cells are then automatically traced to preserve their complex branching structure after which fractal analysis is applied to determine the activation states of the cells. The resulting system detects white matter regions with 84% accuracy, detects microglia with a performance level of 0.70 (F1 score, the harmonic mean of precision and sensitivity) and performs binary microglia morphology classification with a 70% accuracy. This automated pipeline performs these analyses at a 20-fold increase in speed when compared to a human pathologist. Moreover, we have demonstrated robustness to variations in stain intensity common for Iba1 immunostaining. A preliminary analysis was conducted that indicated that this pipeline can identify differences in microglia response due to TBI. An automated solution to microglia cell analysis can greatly increase standardized analysis of brain slides, allowing pathologists and neuroscientists to focus on characterizing the associated underlying diseases and injuries.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Encéfalo/patologia , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Microglia/patologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Substância Branca/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...