Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Syst ; 15(2): 109-133.e10, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38335955

RESUMO

Pluripotency can be induced in somatic cells by the expression of OCT4, KLF4, SOX2, and MYC. Usually only a rare subset of cells reprogram, and the molecular characteristics of this subset remain unknown. We apply retrospective clone tracing to identify and characterize the rare human fibroblasts primed for reprogramming. These fibroblasts showed markers of increased cell cycle speed and decreased fibroblast activation. Knockdown of a fibroblast activation factor identified by our analysis increased the reprogramming efficiency. We provide evidence for a unified model in which cells can move into and out of the primed state over time, explaining how reprogramming appears deterministic at short timescales and stochastic at long timescales. Furthermore, inhibiting the activity of LSD1 enlarged the pool of cells that were primed for reprogramming. Thus, even homogeneous cell populations can exhibit heritable molecular variability that can dictate whether individual rare cells will reprogram or not.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Estudos Retrospectivos , Fibroblastos
2.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352551

RESUMO

Single-molecule RNA fluorescence in situ hybridization (RNA FISH)-based spatial transcriptomics methods have enabled the accurate quantification of gene expression at single-cell resolution by visualizing transcripts as diffraction-limited spots. While these methods generally scale to large samples, image analysis remains challenging, often requiring manual parameter tuning. We present Piscis, a fully automatic deep learning algorithm for spot detection trained using a novel loss function, the SmoothF1 loss, that approximates the F1 score to directly penalize false positives and false negatives but remains differentiable and hence usable for training by deep learning approaches. Piscis was trained and tested on a diverse dataset composed of 358 manually annotated experimental RNA FISH images representing multiple cell types and 240 additional synthetic images. Piscis outperforms other state-of-the-art spot detection methods, enabling accurate, high-throughput analysis of RNA FISH-derived imaging data without the need for manual parameter tuning.

3.
bioRxiv ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461472

RESUMO

The ability of a virus to infect a cell type is at least in part determined by the presence of host factors required for the viral life cycle. However, even within cell types that express known factors needed for infection, not every cell is equally susceptible, suggesting that our knowledge of the full spectrum of factors that promote infection is incomplete. Profiling the most susceptible subsets of cells within a population may reveal additional factors that promote infection. However, because viral infection dramatically alters the state of the cell, new approaches are needed to reveal the state of these cells prior to infection with virus. Here, we used single-cell clone tracing to retrospectively identify and characterize lung epithelial cells that are highly susceptible to infection with SARS-CoV-2. The transcriptional state of these highly susceptible cells includes markers of retinoic acid signaling and epithelial differentiation. Loss of candidate factors identified by our approach revealed that many of these factors play roles in viral entry. Moreover, a subset of these factors exert control over the infectable cell state itself, regulating the expression of key factors associated with viral infection and entry. Analysis of patient samples revealed the heterogeneous expression of these factors across both cells and patients in vivo. Further, the expression of these factors is upregulated in particular inflammatory pathologies. Altogether, our results show that the variable expression of intrinsic cell states is a major determinant of whether a cell can be infected by SARS-CoV-2.

4.
bioRxiv ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798299

RESUMO

Pluripotency can be induced in somatic cells by the expression of the four "Yamanaka" factors OCT4, KLF4, SOX2, and MYC. However, even in homogeneous conditions, usually only a rare subset of cells admit reprogramming, and the molecular characteristics of this subset remain unknown. Here, we apply retrospective clone tracing to identify and characterize the individual human fibroblast cells that are primed for reprogramming. These fibroblasts showed markers of increased cell cycle speed and decreased fibroblast activation. Knockdown of a fibroblast activation factor identified by our analysis led to increased reprogramming efficiency, identifying it as a barrier to reprogramming. Changing the frequency of reprogramming by inhibiting the activity of LSD1 led to an enlarging of the pool of cells that were primed for reprogramming. Our results show that even homogeneous cell populations can exhibit heritable molecular variability that can dictate whether individual rare cells will reprogram or not.

5.
bioRxiv ; 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34401878

RESUMO

The widespread Coronavirus Disease 2019 (COVID-19) is caused by infection with the novel coronavirus SARS-CoV-2. Currently, we have a limited toolset available for visualizing SARS-CoV-2 in cells and tissues, particularly in tissues from patients who died from COVID-19. Generally, single-molecule RNA FISH techniques have shown mixed results in formalin fixed paraffin embedded tissues such as those preserved from human autopsies. Here, we present a platform for preparing autopsy tissue for visualizing SARS-CoV-2 RNA using RNA FISH with amplification by hybridization chain reaction (HCR). We developed probe sets that target different regions of SARS-CoV-2 (including ORF1a and N) as well as probe sets that specifically target SARS-CoV-2 subgenomic mRNAs. We validated these probe sets in cell culture and tissues (lung, lymph node, and placenta) from infected patients. Using this technology, we observe distinct subcellular localization patterns of the ORF1a and N regions, with the ORF1a concentrated around the nucleus and the N showing a diffuse distribution across the cytoplasm. In human lung tissue, we performed multiplexed RNA FISH HCR for SARS-CoV-2 and cell-type specific marker genes. We found viral RNA in cells containing the alveolar type 2 (AT2) cell marker gene (SFTPC) and the alveolar macrophage marker gene (MARCO), but did not identify viral RNA in cells containing the alveolar type 1 (AT1) cell marker gene (AGER). Moreover, we observed distinct subcellular localization patterns of viral RNA in AT2 cells and alveolar macrophages, consistent with phagocytosis of infected cells. In sum, we demonstrate the use of RNA FISH HCR for visualizing different RNA species from SARS-CoV-2 in cell lines and FFPE autopsy specimens. Furthermore, we multiplex this assay with probes for cellular genes to determine what cell-types are infected within the lung. We anticipate that this platform could be broadly useful for studying SARS-CoV-2 pathology in tissues as well as extended for other applications including investigating the viral life cycle, viral diagnostics, and drug screening.

6.
mBio ; 13(1): e0375121, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35130722

RESUMO

The widespread coronavirus disease 2019 (COVID-19) is caused by infection with the novel coronavirus SARS-CoV-2. Currently, we have limited understanding of which cells become infected with SARS-CoV-2 in human tissues and where viral RNA localizes on the subcellular level. Here, we present a platform for preparing autopsy tissue for visualizing SARS-CoV-2 RNA using RNA fluorescence in situ hybridization (FISH) with amplification by hybridization chain reaction. We developed probe sets that target different regions of SARS-CoV-2 (including ORF1a and N), as well as probe sets that specifically target SARS-CoV-2 subgenomic mRNAs. We validated these probe sets in cell culture and tissues (lung, lymph node, and placenta) from infected patients. Using this technology, we observe distinct subcellular localization patterns of the ORF1a and N regions. In human lung tissue, we performed multiplexed RNA FISH HCR for SARS-CoV-2 and cell-type-specific marker genes. We found viral RNA in cells containing the alveolar type 2 (AT2) cell marker gene (SFTPC) and the alveolar macrophage marker gene (MARCO) but did not identify viral RNA in cells containing the alveolar type 1 (AT1) cell marker gene (AGER). Moreover, we observed distinct subcellular localization patterns of viral RNA in AT2 cells and alveolar macrophages. In sum, we demonstrate the use of RNA FISH HCR for visualizing different RNA species from SARS-CoV-2 in cell lines and FFPE (formalin fixation and paraffin embedding) autopsy specimens. We anticipate that this platform could be broadly useful for studying SARS-CoV-2 pathology in tissues, as well as extended for other applications, including investigating the viral life cycle, viral diagnostics, and drug screening. IMPORTANCE Here, we developed an in situ RNA detection assay for RNA generated by the SARS-CoV-2 virus. We found viral RNA in lung, lymph node, and placenta samples from pathology specimens from COVID patients. Using high-magnification microscopy, we can visualize the subcellular distribution of these RNA in single cells.


Assuntos
Células Epiteliais Alveolares , COVID-19 , Humanos , Macrófagos Alveolares , SARS-CoV-2 , RNA Viral , Hibridização in Situ Fluorescente , Pulmão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...