Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Vet Comp Oncol ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752589

RESUMO

Immune checkpoint inhibitor therapy can provide significant clinical benefit in patients with certain cancer types including melanoma; however, objective responses are only observed for a subset of patients. Mucosal melanoma is a rare melanoma subtype associated with a poor prognosis and, compared with cutaneous melanoma, is significantly less responsive to immune checkpoint inhibitors. Spontaneous canine tumours have emerged as valuable models to inform human cancer studies. In contrast to human melanoma, most canine melanomas are mucosal-an incidence that may be leveraged to better understand the subtype in humans. However, a more comprehensive understanding of the immune landscape of the canine disease is required. Here, we quantify tumour infiltrative T and myeloid cells in canine mucosal (n = 13) and cutaneous (n = 5) melanomas using immunohistochemical analysis of CD3 and MAC387 expression, respectively. Gene expression analysis using the Canine IO NanoString panel was also performed to identify genes and pathways associated with immune cell infiltration. T and myeloid cell densities were variable with geometric means of 158.7 cells/mm2 and 166.7 cells/mm2, respectively. Elevated T cell infiltration was associated with increased expression of cytolytic genes as well as genes encoding the coinhibitory checkpoint molecules PD-1, CTLA-4, TIM-3 and TIGIT; whereas increased myeloid cell infiltration was associated with elevated expression of protumourigenic cytokines. These data provide a basic characterization of the tumour microenvironment of canine malignant melanoma and suggest that, like human melanoma, inherent variability in anti-tumour T cell responses exists and that a subset of canine melanomas may respond better to immunomodulation.

2.
Front Neurosci ; 18: 1358491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655106

RESUMO

Introduction: Cannabis consumption is known to immediately affect ocular and oculomotor function, however, cannabis consumption is also known to affect it for a prolonged period of time. The purpose of this study is to identify an eye tracking or pupillometry metric which is affected after recent cannabis consumption but is not confounded by cannabis consumption history or demographic variables. Methods: Quasi-experimental design. Participants who would consume inhalable cannabis (n = 159, mean age 31.0 years, 54% male) performed baseline neurobehavioral testing and eye-function assessments when they were sober. Eye function assessments included eye-tracking [gaze (point of visual focus), saccades (smooth movement)] and pupillometry. Participants then inhaled cannabis until they self-reported to be high and performed the same assessment again. Controls who were cannabis naïve or infrequent users (n = 30, mean age 32.6 years, 57% male) performed the same assessments without consuming cannabis in between. Results: Cannabis significantly affected several metrics of pupil dynamics and gaze. Pupil size variability was the most discriminant variable after cannabis consumption. This variable did not change in controls on repeat assessment (i.e., no learning effect), did not correlate with age, gender, race/ethnicity, or self-reported level of euphoria, but did correlate with THC concentration of cannabis inhaled. Discussion: A novel eye-tracking metric was identified that is affected by recent cannabis consumption and is not different from non-users at baseline. A future study that assesses pupil size variability at multiple intervals over several hours and quantifies cannabis metabolites in biofluids should be performed to identify when this variable normalizes after consumption and if it correlates with blood THC levels.

3.
Commun Biol ; 7(1): 496, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658617

RESUMO

Osteosarcoma (OS) is a heterogeneous, aggressive malignancy of the bone that disproportionally affects children and adolescents. Therapeutic interventions for OS are limited, which is in part due to the complex tumor microenvironment (TME). As such, we used single-cell RNA sequencing (scRNA-seq) to describe the cellular and molecular composition of the TME in 6 treatment-naïve dogs with spontaneously occurring primary OS. Through analysis of 35,310 cells, we identified 41 transcriptomically distinct cell types including the characterization of follicular helper T cells, mature regulatory dendritic cells (mregDCs), and 8 tumor-associated macrophage (TAM) populations. Cell-cell interaction analysis predicted that mregDCs and TAMs play key roles in modulating T cell mediated immunity. Furthermore, we completed cross-species cell type gene signature homology analysis and found a high degree of similarity between human and canine OS. The data presented here act as a roadmap of canine OS which can be applied to advance translational immuno-oncology research.


Assuntos
Neoplasias Ósseas , Doenças do Cão , Osteossarcoma , Análise de Sequência de RNA , Análise de Célula Única , Microambiente Tumoral , Cães , Animais , Osteossarcoma/genética , Osteossarcoma/veterinária , Osteossarcoma/imunologia , Osteossarcoma/patologia , Análise de Sequência de RNA/veterinária , Neoplasias Ósseas/genética , Neoplasias Ósseas/veterinária , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Doenças do Cão/genética , Doenças do Cão/imunologia , Doenças do Cão/patologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Transcriptoma , Feminino , Regulação Neoplásica da Expressão Gênica , Masculino
4.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339116

RESUMO

Tyrosine kinase inhibitors (TKIs) may be combined with radiation therapy (RT) to enhance tumor control; however, increased incidences of gastrointestinal (GI) toxicity have been reported with this combination. We hypothesize that toxicity is due to compromised intestinal healing caused by inhibition of vascular repair and proliferation pathways. This study explores underlying tissue toxicity associated with abdominal RT and concurrent sunitinib in a mouse model. Four groups of CD-1 mice were treated with 12 Gy abdominal RT, oral sunitinib, abdominal RT + sunitinib, or sham treatment. Mice received oral sunitinib or the vehicle via gavage for 14 days. On day 7, mice were irradiated with 12 Gy abdominal RT or sham treated. Mice were euthanized on day 14 and intestinal tract was harvested for semiquantitative histopathologic evaluation and immunohistochemical quantification of proliferation (Ki67) and vascular density (CD31). Non-irradiated groups had stable weights while abdominal irradiation resulted in weight loss, with mice receiving RT + SUN having greater weight loss than mice receiving RT alone. Semiquantitative analysis showed significant increases in inflammation in irradiated groups. The difference in the density of CD31+ cells was significantly increased in RT alone compared to SUN alone. Ki67+ density was not significant. In summary, we identify a lack of angiogenic response in irradiated GI tissues when abdominal RT is combined with a TKI, which may correlate with clinical toxicities seen in canine and human patients receiving combined treatment.


Assuntos
Indóis , Humanos , Animais , Cães , Camundongos , Sunitinibe/efeitos adversos , Antígeno Ki-67 , Indóis/uso terapêutico , Pirróis/efeitos adversos , Inibidores de Proteínas Quinases/efeitos adversos , Modelos Animais de Doenças , Redução de Peso
5.
Res Sq ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37609233

RESUMO

Osteosarcoma (OS) is a heterogeneous, aggressive malignancy of the bone that disproportionally affects children and adolescents. Therapeutic interventions for OS are limited, which is in part due to the complex tumor microenvironment (TME) that has proven to be refractory to immunotherapies. Thus, there is a need to better define the complexity of the OS TME. To address this need, we used single-cell RNA sequencing (scRNA-seq) to describe the cellular and molecular composition of the TME in 6 treatment-naïve dogs with spontaneously occurring primary OS. Through analysis of 35,310 cells, we identified 30 distinct immune cell types, 9 unique tumor populations, 1 cluster of fibroblasts, and 1 cluster of endothelial cells. Independent reclustering of major cell types revealed the presence of follicular helper T cells, mature regulatory dendritic cells (mregDCs), and 8 transcriptomically distinct macrophage/monocyte populations. Cell-cell interaction inference analysis predicted that mregDCs and tumor-associated macrophages (TAMs) play key roles in modulating T cell mediate immunity. Furthermore, we used publicly available human OS scRNA-seq data to complete a cross-species cell type gene signature homology analysis. The analysis revealed a high degree of cell type gene signature homology between species, suggesting the cellular composition of OS is largely conserved between humans and dogs. Our findings provide key new insights into the biology of canine OS and highlight the conserved features of OS across species. Generally, the data presented here acts as a cellular and molecular roadmap of canine OS which can be applied to advance the translational immuno-oncology research field.

6.
Sci Rep ; 13(1): 10422, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369741

RESUMO

Soft tissue sarcomas (STS) are a heterogenous group of mesenchymal tumors representing over 50 distinct types with overlapping histological features and non-specific anatomical locations. Currently, localized sarcomas are treated with surgery + / - radiation in both humans and dogs with few molecularly targeted therapeutic options. However, to improve precision-based cancer therapy through trials in pet dogs with naturally occurring STS tumors, knowledge of genomic profiling and molecular drivers in both species is essential. To this purpose, we sought to characterize the transcriptomic and genomic mutation profiles of canine STS subtypes (fibrosarcoma, undifferentiated pleomorphic sarcoma, and peripheral nerve sheath tumors), by leveraging RNAseq, whole exome sequencing, immunohistochemistry, and drug assays. The most common driver mutations were in cell cycle/DNA repair (31%, TP53-21%) and chromatin organization/binding (41%, KMT2D-21%) genes. Similar to a subset of human sarcomas, we identified fusion transcripts of platelet derived growth factor B and collagen genes that predict sensitivity to PDGFR inhibitors. Transcriptomic profiling grouped these canine STS tumors into 4 clusters, one PNST group (H1), and 3 FSA groups selectively enriched for extracellular matrix interactions and PDFGB fusions (H2), homeobox transcription factors (H3), and elevated T-cell infiltration (H4). This multi-omics approach provides insights into canine STS sub-types at a molecular level for comparison to their human counterparts, to improve diagnosis, and may provide additional targets for chemo- and immuno-therapy.


Assuntos
Histiocitoma Fibroso Maligno , Sarcoma , Neoplasias de Tecidos Moles , Animais , Cães , Becaplermina/genética , Mutação , Proteínas Proto-Oncogênicas c-sis/genética , Sarcoma/genética , Sarcoma/veterinária , Sarcoma/patologia , Neoplasias de Tecidos Moles/patologia , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética
7.
Biointerphases ; 18(3)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37289032

RESUMO

Microbial growth on surfaces poses health concerns and can accelerate the biodegradation of engineered materials and coatings. Cyclic peptides are promising agents to combat biofouling because they are more resistant to enzymatic degradation than their linear counterparts. They can also be designed to interact with extracellular targets and intracellular targets and/or self-assemble into transmembrane pores. Here, we determine the antimicrobial efficacy of two pore-forming cyclic peptides, α-K3W3 and ß-K3W3, against bacterial and fungal liquid cultures and their capacity to inhibit biofilm formation on coated surfaces. These peptides display identical sequences, but the additional methylene group in the peptide backbone of ß-amino acids results in a larger diameter and an enhancement in the dipole moment. In liquid cultures, ß-K3W3 exhibited lower minimum inhibitory concentration values and greater microbicidal power in reducing the number of colony forming units (CFUs) when exposed to a gram-positive bacterium, Staphylococcus aureus, and two fungal strains, Naganishia albida and Papiliotrema laurentii. To evaluate the efficacy against the formation of fungal biofilms on painted surfaces, cyclic peptides were incorporated into polyester-based thermoplastic polyurethane. The formation of N. albida and P. laurentii microcolonies (105 per inoculation) for cells extracted from coatings containing either peptide could not be detected after a 7-day exposure. Moreover, very few CFUs (∼5) formed after 35 days of repeated depositions of freshly cultured P. laurentii every 7 days. In contrast, the number of CFUs for cells extracted from the coating without cyclic peptides was >8 log CFU.


Assuntos
Anti-Infecciosos , Poliuretanos , Poliuretanos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Anti-Infecciosos/farmacologia , Biofilmes , Peptídeos , Peptídeos Cíclicos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
8.
Front Oncol ; 13: 1130215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035209

RESUMO

Fueled by support from the National Cancer Institute's "Cancer Moonshot" program, the past few years have witnessed a renewed interest in the canine spontaneous cancer model as an invaluable resource in translational oncology research. Increasingly, there is awareness that pet dogs with cancer provide an accessible bridge to improving the efficiency of cancer drug discovery and clinical therapeutic development. Canine tumors share many biological, genetic, and histologic features with their human tumor counterparts, and most importantly, retain the complexities of naturally occurring drug resistance, metastasis, and tumor-host immune interactions, all of which are difficult to recapitulate in induced or genetically engineered murine tumor models. The utility of canine models has been particularly apparent in sarcoma research, where the increased incidence of sarcomas in dogs as compared to people has facilitated comparative research resulting in treatment advances benefitting both species. Although there is an increasing awareness of the advantages in using spontaneous canine sarcoma models for research, these models remain underutilized, in part due to a lack of more permanent institutional and cross-institutional infrastructure to support partnerships between veterinary and human clinician-scientists. In this review, we provide an updated overview of historical and current applications of spontaneously occurring canine tumor models in sarcoma research, with particular attention to knowledge gaps, limitations, and growth opportunities within these applications. Furthermore, we propose considerations for working within existing veterinary translational and comparative oncology research infrastructures to maximize the benefit of partnerships between veterinary and human biomedical researchers within and across institutions to improve the utility and application of spontaneous canine sarcomas in translational oncology research.

9.
Arthroscopy ; 39(9): 1983-1997, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37001743

RESUMO

PURPOSE: To perform a preclinical histologic assessment of a biphasic acellular interpositional cancellous allograft in an ovine model of rotator cuff repair (RCR) designed to better understand its safety profile and effects on tendon healing after RCR. METHODS: Thirty skeletally mature sheep with clinically normal shoulders with an artificially created degenerative infraspinatus tendon tear were randomized to control and treatment groups. Animals were euthanized at 3 weeks, 6 weeks, and 12 weeks. After gross dissection, rotator cuff specimens were fixed with formalin and polymerized for sectioning and staining. Blinded histologic scores evaluated inflammatory cell infiltrates, signs of degradation, particulate debris, collagen arrangement, neovascularization, and enthesis qualitative measures. RESULTS: There were no treatment specimens that exhibited histologic signs of a significant infection, inflammatory infiltrate, or foreign body reaction such as granuloma or fibrous capsule formation. Histologic scores in all categories were not significantly different at all time points, including the primary end point mean cumulative inflammatory score (control: 3.66 ± 1.21 vs treated: 4.33 ± 1.51, P = .42), when comparing the treatment and control RCR groups. In general, the degree of tendon healing and host tissue response was essentially equivalent between the 2 groups with observation of low overall levels of inflammation and progressive improvements in collagen organization, reduced tenocyte activity, and fibrocartilaginous enthesis reformation. CONCLUSIONS: This histologic study demonstrated the use of a biphasic interpositional allograft for RCR augmentation in an ovine model does not generate an inflammatory response or foreign body reaction. Use of the biphasic interpositional allograft resulted in a histological profile that was essentially equivalent to that of a standard RCR at 3-, 6-, and 12-week postoperative timepoints. These findings suggest that a biphasic interpositional allograft is safe for further clinical investigation in humans before broader clinical application. CLINICAL RELEVANCE: Patch augmentation of RCR is a popular technique that has shown clinical success in improving the likelihood of a successful repair in patients at elevated risk for retear. Newer augmentation technologies are being developed to address the biology at the interface between the bone and soft tissue where failure typically occurs.


Assuntos
Lesões do Manguito Rotador , Manguito Rotador , Humanos , Animais , Ovinos , Manguito Rotador/patologia , Lesões do Manguito Rotador/cirurgia , Lesões do Manguito Rotador/patologia , Cicatrização/fisiologia , Colágeno/metabolismo , Aloenxertos/patologia
10.
Steroids ; 195: 109228, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36990195

RESUMO

Circulating 17ß-estradiol (E2) controls energy homeostasis and feeding behaviors primarily by its nuclear receptor, estrogen receptor (ER) α. As such, it is important to understand the role of ERα signaling in the neuroendocrine control of feeding. Our previous data indicated that the loss of ERα signaling through estrogen response elements (ERE) alters food intake in a female mouse model. Hence, we hypothesize that ERE-dependent ERα is necessary for typical feeding behaviors in mice. To test this hypothesis, we examined feeding behaviors on low-fat diet (LFD) and high-fat diet (HFD) in three mouse strains: total ERα knockout (KO), ERα knockin/knockout (KIKO), which lack a functional DNA-binding domain, and their wild type (WT) C57 littermates comparing intact males and females and ovariectomized females with or without E2 replacement. All feeding behaviors were recorded using the Biological Data Acquisition monitoring system (Research Diets). In intact male mice, KO and KIKO consumed less than WT mice on LFD and HFD, while in intact female mice, KIKO consumed less than WT and KO. These differences were primarily driven by shorter meal duration in the KO and KIKO. In ovariectomized females, E2-treated WT and KIKO consumed more LFD than KO driven in part by an increase in meal frequency and a decrease in meal size. On HFD, WT consumed more than KO with E2, again due to effects on meal size and frequency. Collectively, these suggest that both ERE-dependent and -independent ERα signaling are involved in feeding behaviors in female mice depending on the diet consumed.


Assuntos
Receptor alfa de Estrogênio , Receptores de Estrogênio , Camundongos , Feminino , Masculino , Animais , Receptor alfa de Estrogênio/genética , Camundongos Knockout , Estrogênios , Comportamento Alimentar , Elementos de Resposta
11.
Tissue Eng Part A ; 29(9-10): 282-291, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36792933

RESUMO

Tendon injuries and disease are resistant to surgical repair; thus, adjunct therapies are widely investigated, especially mesenchymal stromal cells (MSCs) and, more recently, their extracellular vesicles (MSCdEVs), for example, exosomes. Thought to act on resident and infiltrating immune cells, the role of MSCdEVs in paracrine signaling is of great interest. This study investigated how MSCdEVs differ from analogs derived from resident (tenocyte) populations (TdEV). As macrophages play a significant role in tendon maintenance and repair, macrophage signaling was compared by cytokine quantification using a multiplexed immunoassay and tenocyte migration by in vitro scratch-wound analysis. TdEV-treated macrophages decreased IL-1 and increased MIP-1 and CXCL8 expression. In addition, macrophage signaling favored collagen synthesis and tenocyte bioactivity, while reducing proangiogenic signaling when TdEVs were used in place of MSCdEVs. These in vitro data demonstrate a differential influence of exosomes on macrophage signaling, according to cell source, supporting that local cell-derived exosomes may preferentially drive healing by different means with possible different outcomes compared to MSCdEVs. Impact Statement Adipose-derived mesenchymal stromal cell (AdMSC) exosomes (EVs) can improve tendon mechanical resilience, tissue organization, and M2 macrophage phenotype predominance in response to tendon injury. This active area of investigation drives great interest in the function of these exosomes as adjunct therapies for tendon disease, particularly rotator cuff tendinopathy. However, little is known about the effects of EVs as a function of cell source, nor regarding their efficacy in preclinical translational ovine models. Herein we demonstrate a differential effect of exosomes as a function of cell source, tenocyte compared to AdMSCs, on macrophage signaling and tenocyte migration of ovine cells.


Assuntos
Exossomos , Vesículas Extracelulares , Traumatismos dos Tendões , Ovinos , Animais , Exossomos/metabolismo , Tenócitos/fisiologia , Tendões , Traumatismos dos Tendões/metabolismo , Macrófagos
12.
J Orthop Res ; 41(10): 2221-2231, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36722700

RESUMO

The high failure rate of rotator cuff repair surgeries is positively correlated with age, yet the biomechanical changes to the tendons of the rotator cuff with age have not been described. As such, we sought to benchmark and characterize the biomechanical and histopathological properties with the accompanying gene expression of human rotator cuff tendons as a function of age and histopathological degeneration. All four rotator cuff tendons from fresh human cadaver shoulders underwent biomechanical, histopathological, and gene expression analyses. Following cadaver availability, samples were grouped into Younger (i.e., less than 36 years of age, n = 2 donors) and Aged (i.e., greater than 55 years of age, n = 3 donors) as a means of characterizing and quantifying the age-related changes exhibited by the tendons. Biomechanical testing and subsequent computational modeling techniques revealed both differences in properties between tendons and greater Young's moduli in the Younger tendons (supraspinatus 3.06x, infraspinatus 1.76x, subscapularis 1.25x, and teres minor 1.32x). Histopathological scoring using the semi-quantitative Bonar scoring scheme revealed a positive correlation with age across all tendons (r = 0.508, p < 0.001). These data contextualize the biomechanical and histopathological changes to tendons that occurs naturally with aging, highlighting the innate differences in biomechanical properties of all four rotator cuff tendons, as well as the difference in their degenerative trajectories. Additionally, the histopathological scoring revealed moderate signs of degeneration within the Younger supraspinatus tendons, suggesting tissue quality may decrease in this specific tendon in patients less than 40 years old, before clinical symptoms or tears.


Assuntos
Lesões do Manguito Rotador , Manguito Rotador , Humanos , Pré-Escolar , Adulto , Manguito Rotador/patologia , Lesões do Manguito Rotador/patologia , Fenômenos Biomecânicos , Envelhecimento , Cadáver
13.
bioRxiv ; 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36711648

RESUMO

Canine soft tissue sarcomas (STS) are a heterogenous group of malignant tumors arising from mesenchymal cells of soft tissues. This simplified collective of tumors most commonly arise from subcutaneous tissues, are treated similar clinically, and conventionally exclude other sarcomas with more definitive anatomical, histological, or biological features. Histologically, canine STS sub-types are difficult to discern at the light microscopic level due to their overlapping features. Thus, genomic, and transcriptomic profiling of canine STS may prove valuable in differentiating the diverse sub-types of mesenchymal neoplasms within this group. To this purpose we sought to characterize the transcript expression and genomic mutation profiles of canine STS. To delineate transcriptomic sub-types, hierarchical clustering was used to identify 4 groups with district expression profiles. Using the RNAseq data, we identified three samples carrying driver fusions of platelet derived growth factor B ( PDGFB ) and collagen genes. Sensitivity to imatinib was evaluated in a canine STS cell line also bearing a PDGFB fusion. Using whole exome sequencing, recurrent driver variants were identified in the cancer genes KMT2D (21% of the samples) and TP53 (21%) along with copy number losses of RB1 and CDKN2A. Gene amplifications and resulting transcript increases were identified in genes on chromosomes 13, 14, and 36. A subset of STS was identified with high T-cell infiltration. This multi-omics approach has defined canine STS sub-types at a molecular level for comparison to their human counterparts, to improve diagnosis, and may provide additional targets for therapy.

14.
ACS Appl Mater Interfaces ; 14(45): 50543-50556, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36331290

RESUMO

The COVID-19 pandemic has revealed the importance of the detection of airborne pathogens. Here, we present composite air filters featuring a bioinspired liquid coating that facilitates the removal of captured aerosolized bacteria and viruses for further analysis. We tested three types of air filters: commercial polytetrafluoroethylene (PTFE), which is well known for creating stable liquid coatings, commercial high-efficiency particulate air (HEPA) filters, which are widely used, and in-house-manufactured cellulose nanofiber mats (CNFMs), which are made from sustainable materials. All filters were coated with omniphobic fluorinated liquid to maximize the release of pathogens. We found that coating both the PTFE and HEPA filters with liquid improved the rate at which Escherichia coli was recovered using a physical removal process compared to uncoated controls. Notably, the coated HEPA filters also increased the total number of recovered cells by 57%. Coating the CNFM filters did not improve either the rate of release or the total number of captured cells. The most promising materials, the liquid-coated HEPA, filters were then evaluated for their ability to facilitate the removal of pathogenic viruses via a chemical removal process. Recovery of infectious JC polyomavirus, a nonenveloped virus that attacks the central nervous system, was increased by 92% over uncoated controls; however, there was no significant difference in the total amount of genomic material recovered compared to that of controls. In contrast, significantly more genomic material was recovered for SARS-CoV-2, the airborne, enveloped virus, which causes COVID-19, from liquid-coated filters. Although the amount of infectious SARS-CoV-2 recovered was 58% higher, these results were not significantly different from uncoated filters due to high variability. These results suggest that the efficient recovery of airborne pathogens from liquid-coated filters could improve air sampling efforts, enhancing biosurveillance and global pathogen early warning.


Assuntos
Filtros de Ar , COVID-19 , Vírus , Humanos , Pandemias , SARS-CoV-2 , COVID-19/prevenção & controle , Bactérias , Poeira , Politetrafluoretileno
15.
Am J Sports Med ; 50(13): 3649-3659, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36259712

RESUMO

BACKGROUND: Osteoporosis is an independent risk factor for failure after arthroscopic rotator cuff repair. Since rerupture rates after rotator cuff repair are associated with decreased bone mineral density and bone microarchitecture, adaptations of biomechanical properties of the rotator cuff enthesis in patients with osteoporosis remain unclear. Additionally, the effects of osteogenic therapy carrier drugs used for the treatment of osteoporosis on rotator cuff structure and properties have not been previously documented. PURPOSE: To investigate the changes to soft tissue biomechanics and insertional structure secondary to osteoporosis with and without an osteogenic therapy carrier (ie, modified alendronate). STUDY DESIGN: Controlled laboratory study. METHODS: Biomechanical, histopathological, and microcomputed tomography analyses were performed on 20 shoulders obtained from 10 osteoporotic sheep randomly allocated to modified bisphosphonate (ie, alendronate) or control (ie, osteoporotic without treatment) groups; 6 shoulders from healthy sheep were utilized for comparison purposes. RESULTS: Tendons from the control group exhibited a 57% decrease in undeformed Young modulus as compared with the healthy group (P = .010). Tendons from the modified bisphosphonate treatment group exhibited a 229% increase in initial Young modulus as compared with the control group (P = .010). Marked changes within the tendon insertional organization were noted in both the control and the modified bisphosphonate treatment group samples as evidenced by increased interdigitation of the bone-mineralized fibrocartilaginous junction. The control samples exhibited a markedly paucicellular insertion, whereas the modified bisphosphonate treated tendons exhibited a hypercellular insertional region as compared with the healthy group. Both groups exhibited significantly (P < .01) decreased bone quality underlying the infraspinatus insertion, as evidenced by all microcomputed tomography outcome parameters. CONCLUSION: This work illuminates changes to rotator cuff tendon secondary to osteoporosis. Specifically, it revealed decreased tendon modulus and altered insertional structure in the osteoporotic samples. Secondarily, these data revealed increases in tendon modulus accompanied by increased cellularity within the tendon insertion region after systemic modified bisphosphonate injections. CLINICAL RELEVANCE: Bisphosphonate treatment may have a positive effect on the healing of the enthesis after rotator cuff repair.


Assuntos
Osteoporose , Lesões do Manguito Rotador , Animais , Alendronato , Manguito Rotador/cirurgia , Lesões do Manguito Rotador/cirurgia , Ovinos , Microtomografia por Raio-X
16.
Front Vet Sci ; 9: 816529, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187145

RESUMO

Trauma to the soft tissues of the ankle joint distal syndesmosis often leads to syndesmotic instability, resulting in undesired movement of the talus, abnormal pressure distributions, and ultimately arthritis if deterioration progresses without treatment. Historically, syndesmotic injuries have been repaired by placing a screw across the distal syndesmosis to provide rigid fixation to facilitate ligament repair. While rigid syndesmotic screw fixation immobilizes the ligamentous injury between the tibia and fibula to promote healing, the same screws inhibit normal physiologic movement and dorsiflexion. It has been shown that intact screw removal can be beneficial for long-term patient success; however, the exact timing remains an unanswered question that necessitates further investigation, perhaps using animal models. Because of the sparsity of relevant preclinical models, the purpose of this study was to develop a new, more translatable, large animal model that can be used for the investigation of clinical foot and ankle implants. Eight (8) skeletally mature sheep underwent stabilization of the left and right distal carpal bones following transection of the dorsal and interosseous ligaments while the remaining two animals served as un-instrumented controls. Four of the surgically stabilized animals were sacrificed 6 weeks after surgery while the remaining four animals were sacrificed 10 weeks after surgery. Ligamentous healing was evaluated using radiography, histology, histomorphometry, and histopathology. Overall, animals demonstrated a high tolerance to the surgical procedure with minimal complications. Animals sacrificed at 10 weeks post-surgery had a slight trend toward mildly decreased inflammation, decreased necrotic debris, and a slight increase in the healing of the transected ligaments. The overall degree of soft tissue fibrosis/fibrous expansion, including along the dorsal periosteal surfaces/joint capsule of the carpal bones was very similar between both timepoints and often exhibited signs of healing. The findings of this study indicate that the carpometacarpal joint may serve as a viable location for the investigation of human foot and ankle orthopedic devices. Future work may include the investigation of orthopedic foot and ankle medical devices, biologic treatments, and repair techniques in a large animal model capable of providing translational results for human treatment.

17.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055015

RESUMO

Stereotactic body radiotherapy (SBRT) is known to induce important immunologic changes within the tumor microenvironment (TME). However, little is known regarding the early immune responses within the TME in the first few weeks following SBRT. Therefore, we used the canine spontaneous tumor model to investigate TME responses to SBRT, and how local injection of immune modulatory antibodies to OX40 and TLR 3/9 agonists might modify those responses. Pet dogs with spontaneous cancers (melanoma, carcinoma, sarcoma, n = 6 per group) were randomized to treatment with either SBRT or SBRT combined with local immunotherapy. Serial tumor biopsies and serum samples were analyzed for immunologic responses. SBRT alone resulted at two weeks after treatment in increased tumor densities of CD3+ T cells, FoxP3+ Tregs, and CD204+ macrophages, and increased expression of genes associated with immunosuppression. The addition of OX40/TLR3/9 immunotherapy to SBRT resulted in local depletion of Tregs and tumor macrophages and reduced Treg-associated gene expression (FoxP3), suppressed macrophage-associated gene expression (IL-8), and suppressed exhausted T cell-associated gene expression (CTLA4). Increased concentrations of IL-7, IL-15, and IL-18 were observed in serum of animals treated with SBRT and immunotherapy, compared to animals treated with SBRT. A paradoxical decrease in the density of effector CD3+ T cells was observed in tumor tissues that received combined SBRT and immunotherapy as compared to animals treated with SBRT only. In summary, these results obtained in a spontaneous large animal cancer model indicate that addition of OX40/TLR immunotherapy to SBRT modifies important immunological effects both locally and systemically.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Doenças do Cão/terapia , Neoplasias/veterinária , Radiocirurgia/métodos , Receptores OX40/antagonistas & inibidores , Receptores Toll-Like/antagonistas & inibidores , Animais , Terapia Combinada , Citocinas , Doenças do Cão/diagnóstico , Doenças do Cão/etiologia , Cães , Feminino , Expressão Gênica , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Masculino , Neovascularização Patológica/metabolismo , Radioterapia Guiada por Imagem , Tomografia Computadorizada por Raios X , Resultado do Tratamento , Microambiente Tumoral/imunologia
18.
Vet Comp Oncol ; 20(1): 69-81, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34021685

RESUMO

Transitional cell carcinoma (TCC), also known as urothelial carcinoma, is the most common bladder cancer in humans and dogs. Approximately one-quarter of human TCCs are muscle-invasive and associated with a high risk of death from metastasis. Canine TCC (cTCC) tumours are typically high-grade and muscle-invasive. Shared similarities in risk factors, histopathology, and clinical presentation suggest that cTCC may serve as a model for the assessment of novel therapeutics that may inform therapies for human muscle-invasive TCC. The goal of this study was to characterize cTCC at the molecular level to identify drivers of oncogenesis and druggable targets. We performed whole exome sequencing (WES) of 11 cTCC tumours and three matched normal samples, identifying 583 variants in protein-coding genes. The most common variant was a V-to-E missense mutation in BRAF, identified in 4 out of 11 samples (36%) via WES. Sanger sequencing identified BRAF variants in 8 out of the same 11 cTCC samples, as well as in 22 out of 32 formalin-fixed paraffin embedded (FFPE) cTCC samples, suggesting an overall prevalence of 70%. RNA-Seq was performed to compare the gene expression profiles of cTCC tumours to normal bladder tissue. cTCC tumours exhibited up-regulation of genes involved in the cell cycle, DNA repair, and antiviral immunity. We also analysed the immune landscape of cTCC using immune gene signatures and immunohistochemical analysis. A subset of tumours had characteristics of a hot tumour microenvironment and exhibited high expression of signatures associated with complete response to PD-1/PD-L1 blockade in human bladder cancer.


Assuntos
Carcinoma de Células de Transição , Doenças do Cão , Neoplasias da Bexiga Urinária , Animais , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/metabolismo , Carcinoma de Células de Transição/veterinária , Doenças do Cão/genética , Doenças do Cão/patologia , Cães , Proteínas Proto-Oncogênicas B-raf/genética , Transcriptoma , Microambiente Tumoral , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/veterinária
19.
Int J Radiat Oncol Biol Phys ; 112(3): 759-770, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610386

RESUMO

PURPOSE: Recent studies reported therapeutic effects of Smad7 on oral mucositis in mice without compromising radiation therapy-induced cancer cell killing in neighboring oral cancer. This study aims to assess whether a Smad7-based biologic can treat oral mucositis in a clinically relevant setting by establishing an oral mucositis model in dogs and analyzing molecular targets. METHODS AND MATERIALS: We created a truncated human Smad7 protein fused with the cell-penetrating Tat tag (Tat-PYC-Smad7). We used intensity modulated radiation therapy to induce oral mucositis in dogs and applied Tat-PYC-Smad7 to the oral mucosa in dose-finding studies after intensity modulated radiation therapy. Clinical outcomes were evaluated. Molecular targets were analyzed in biopsies and serum samples. RESULTS: Tat-PYC-Smad7 treatment significantly shortened the duration of grade 3 oral mucositis based on double-blinded Veterinary Radiation Therapy Oncology Group scores and histopathology evaluations. Topically applied Tat-PYC-Smad7 primarily penetrated epithelial cells and was undetectable in serum. NanoString nCounter Canine IO Panel identified that, compared to the vehicle samples, top molecular changes in Tat-PYC-Smad7 treated samples include reductions in inflammation and cell death and increases in cell growth and DNA repair. Consistently, immunostaining shows that Tat-PYC-Smad7 reduced DNA damage and neutrophil infiltration with attenuated TGF-ß and NFκB signaling. Furthermore, IL-1ß and TNF-α were lower in Tat-PYC-Smad7 treated mucosa and serum samples compared to those in vehicle controls. CONCLUSIONS: Topical Tat-PYC-Smad7 application demonstrated therapeutic effects on oral mucositis induced by intensity modulated radiation therapy in dogs. The local effects of Tat-PYC-Smad7 targeted molecules involved in oral mucositis pathogenesis as well as reduced systemic inflammatory cytokines.


Assuntos
Mucosite , Lesões por Radiação , Estomatite , Animais , Cães , Produtos do Gene tat/metabolismo , Camundongos , Lesões por Radiação/complicações , Proteína Smad7/genética , Proteína Smad7/metabolismo , Estomatite/metabolismo , Fator de Crescimento Transformador beta/metabolismo
20.
Clin Cancer Res ; 28(4): 662-676, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34580111

RESUMO

PURPOSE: There is increasing recognition that progress in immuno-oncology could be accelerated by evaluating immune-based therapies in dogs with spontaneous cancers. Osteosarcoma (OS) is one tumor for which limited clinical benefit has been observed with the use of immune checkpoint inhibitors. We previously reported the angiotensin receptor blocker losartan suppressed metastasis in preclinical mouse models through blockade of CCL2-CCR2 monocyte recruitment. Here we leverage dogs with spontaneous OS to determine losartan's safety and pharmacokinetics associated with monocyte pharmacodynamic endpoints, and assess its antitumor activity, in combination with the kinase inhibitor toceranib. PATIENTS AND METHODS: CCL2 expression, monocyte infiltration, and monocyte recruitment by human and canine OS tumors and cell lines were assessed by gene expression, ELISA, and transwell migration assays. Safety and efficacy of losartan-toceranib therapy were evaluated in 28 dogs with lung metastatic OS. Losartan PK and monocyte PD responses were assessed in three dose cohorts of dogs by chemotaxis, plasma CCL2, and multiplex cytokine assays, and RNA-seq of losartan-treated human peripheral blood mononuclear cells. RESULTS: Human and canine OS cells secrete CCL2 and elicit monocyte migration, which is inhibited by losartan. Losartan PK/PD studies in dogs revealed that a 10-fold-higher dose than typical antihypertensive dosing was required for blockade of monocyte migration. Treatment with high-dose losartan and toceranib was well-tolerated and induced a clinical benefit rate of 50% in dogs with lung metastases. CONCLUSIONS: Losartan inhibits the CCL2-CCR2 axis, and in combination with toceranib, exerts significant biological activity in dogs with metastatic osteosarcoma, supporting evaluation of this drug combination in patients with pediatric osteosarcoma. See related commentary by Weiss et al., p. 571.


Assuntos
Neoplasias Ósseas , Doenças do Cão , Osteossarcoma , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/veterinária , Doenças do Cão/tratamento farmacológico , Cães , Humanos , Leucócitos Mononucleares , Losartan/farmacologia , Losartan/uso terapêutico , Camundongos , Monócitos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...