Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946085

RESUMO

This Article shares the proceedings from the August 29th, 2023 (day 1) workshop "Physiologically Based Biopharmaceutics Modeling (PBBM) Best Practices for Drug Product Quality: Regulatory and Industry Perspectives". The focus of the day was on model parametrization; regulatory authorities from Canada, the USA, Sweden, Belgium, and Norway presented their views on PBBM case studies submitted by industry members of the IQ consortium. The presentations shared key questions raised by regulators during the mock exercise, regarding the PBBM input parameters and their justification. These presentations also shed light on the regulatory assessment processes, content, and format requirements for future PBBM regulatory submissions. In addition, the day 1 breakout presentations and discussions gave the opportunity to share best practices around key questions faced by scientists when parametrizing PBBMs. Key questions included measurement and integration of drug substance solubility for crystalline vs amorphous drugs; impact of excipients on apparent drug solubility/supersaturation; modeling of acid-base reactions at the surface of the dissolving drug; choice of dissolution methods according to the formulation and drug properties with a view to predict the in vivo performance; mechanistic modeling of in vitro product dissolution data to predict in vivo dissolution for various patient populations/species; best practices for characterization of drug precipitation from simple or complex formulations and integration of the data in PBBM; incorporation of drug permeability into PBBM for various routes of uptake and prediction of permeability along the GI tract.

2.
J Pharm Sci ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38862090

RESUMO

Reformulation with addition of antioxidants is one potential mitigation strategy to prevent or reduce nitrosamine drug substance-related impurities (NDSRIs) in drug products. To explore whether there could be other approaches to demonstrate bioequivalence for a reformulated oral product, which typically needs in vivo bioequivalence studies to support the changes after approval, the effects of antioxidant on the in vitro permeability of BCS III model drug substances were investigated to see whether there could be any potential impact on drug absorption. Six antioxidants were screened and four (ascorbic acid, cysteine, α-tocopherol and propyl gallate) were selected based on their nitrosamine inhibition efficiencies. The study demonstrated that these four antioxidants, at the tested amounts, did not have observable impact on the in vitro permeability of the BCS III model drug substances across Caco-2 cell monolayers in the In Vitro Dissolution Absorption System (IDAS). An in vitro permeability study could be considered as part of one potential bioequivalence bridging approach for reformulated low-risk immediate release solid oral products and oral suspension products. Other factors such as the influence of antioxidants on intestinal transporter activities should be considered where appropriate.

3.
Pharmaceutics ; 16(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38794309

RESUMO

The presence of mutagenic and carcinogenic N-nitrosamine impurities in medicinal products poses a safety risk. While incorporating antioxidants in formulations is a potential mitigation strategy, concerns arise regarding their interference with drug absorption by inhibiting intestinal drug transporters. Our study screened thirty antioxidants for inhibitory effects on key intestinal transporters-OATP2B1, P-gp, and BCRP in HEK-293 cells (OATP2B1) or membrane vesicles (P-gp, BCRP) using 3H-estrone sulfate, 3H-N-methyl quinidine, and 3H-CCK8 as substrates, respectively. The screen identified that butylated hydroxyanisole (BHA) and carnosic acid inhibited all three transporters (OATP2B1, P-gp, and BCRP), while ascorbyl palmitate (AP) inhibited OATP2B1 by more than 50%. BHA had IC50 values of 71 ± 20 µM, 206 ± 14 µM, and 182 ± 49 µM for OATP2B1, BCRP, and P-gp, respectively. AP exhibited IC50 values of 23 ± 10 µM for OATP2B1. The potency of AP and BHA was tested with valsartan, an OATP2B1 substrate, and revealed IC50 values of 26 ± 17 µM and 19 ± 11 µM, respectively, in HEK-293-OATP2B1 cells. Comparing IC50 values of AP and BHA with estimated intestinal concentrations suggests an unlikely inhibition of intestinal transporters at clinical concentrations of drugs formulated with antioxidants.

4.
Mol Pharm ; 21(5): 2065-2080, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38600804

RESUMO

Physiologically based biopharmaceutics modeling (PBBM) is used to elevate drug product quality by providing a more accurate and holistic understanding of how drugs interact with the human body. These models are based on the integration of physiological, pharmacological, and pharmaceutical data to simulate and predict drug behavior in vivo. Effective utilization of PBBM requires a consistent approach to model development, verification, validation, and application. Currently, only one country has a draft guidance document for PBBM, whereas other major regulatory authorities have had limited experience with the review of PBBM. To address this gap, industry submitted confidential PBBM case studies to be reviewed by the regulatory agencies; software companies committed to training. PBBM cases were independently and collaboratively discussed by regulators, and academic colleagues participated in some of the discussions. Successful bioequivalence "safe space" industry case examples are also presented. Overall, six regulatory agencies were involved in the case study exercises, including ANVISA, FDA, Health Canada, MHRA, PMDA, and EMA (experts from Belgium, Germany, Norway, Portugal, Spain, and Sweden), and we believe this is the first time such a collaboration has taken place. The outcomes were presented at this workshop, together with a participant survey on the utility and experience with PBBM submissions, to discuss the best scientific practices for developing, validating, and applying PBBMs. The PBBM case studies enabled industry to receive constructive feedback from global regulators and highlighted clear direction for future PBBM submissions for regulatory consideration.


Assuntos
Biofarmácia , Indústria Farmacêutica , Humanos , Biofarmácia/métodos , Indústria Farmacêutica/métodos , Modelos Biológicos , Equivalência Terapêutica , Preparações Farmacêuticas/química , Estados Unidos
5.
J Pharm Sci ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38484875

RESUMO

The addition of antioxidants to pharmaceutical products is a potential approach to inhibit nitrosamine formation, particularly in solid oral dosage forms like tablets and capsules. The objective was to assess the effect of ten antioxidants on the permeability of four Biopharmaceutics Classification System (BCS) Class III drugs. Bi-directional drug permeability studies in the absence and presence of antioxidants were performed in vitro across MDCK-II monolayers. No antioxidant increased drug permeability, while the positive control sodium lauryl sulfate always increased drug permeability. Results support that any of the ten antioxidants, up to at least 10 mg, can be added to a solid oral dosage form without modulating passive drug intestinal permeability. Additional considerations are also discussed.

6.
AAPS J ; 18(6): 1406-1417, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27650190

RESUMO

This review presents scientific and regulatory considerations for the development of solid oral modified release (MR) drug products. It includes a rationale for patient-focused development based on Quality-by-Design (QbD) principles. Product and process understanding of MR products includes identification and risk-based evaluation of critical material attributes (CMAs), critical process parameters (CPPs), and their impact on critical quality attributes (CQAs) that affect the clinical performance. The use of various biopharmaceutics tools that link the CQAs to a predictable and reproducible clinical performance for patient benefit is emphasized. Product and process understanding lead to a more comprehensive control strategy that can maintain product quality through the shelf life and the lifecycle of the drug product. The overall goal is to develop MR products that consistently meet the clinical objectives while mitigating the risks to patients by reducing the probability and increasing the detectability of CQA failures.


Assuntos
Biofarmácia/métodos , Química Farmacêutica/métodos , Descoberta de Drogas/métodos , Controle de Qualidade , Administração Oral , Animais , Biofarmácia/legislação & jurisprudência , Química Farmacêutica/legislação & jurisprudência , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/metabolismo , Descoberta de Drogas/legislação & jurisprudência , Humanos , Solubilidade
7.
J Pharm Sci ; 93(8): 2064-75, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15236455

RESUMO

The objective of this study was to assess the contributions of surfactant-mediated solubility and micellar diffusivity on the ability of surfactant to enhance drug dissolution. The following model was derived to predict the degree to which surfactants enhance griseofulvin dissolution: phi = 1 + (fm/ff).((D(D-M)2/3)/(DD2/3)) where phi is the degree of surfactant-mediated dissolution enhancement, fm is the fraction of the drug in micelle, and ff is the fraction of free drug, and DD and D(D-M) are the diffusivities of free drug and drug-loaded micelles, respectively. The Wood apparatus was used to measure the dissolution of griseofluvin in the presence of the anionic surfactant sodium dodecyl sulfate (SDS), the cationic surfactant cetyl trimethyl ammonium bromide (CTAB), and the neutral surfactants Tween 80 and Cremophor EL. DD was estimated using the Levich equation. D(D-M) was measured using dynamic light scattering. Griseofulvin solubility was evaluated in SDS, CTAB, Tween 80, and Cremophor EL at the surfactant concentrations used in the dissolution studies. DD was 11.0 x 10(-6) cm2/s. D(D-M) was 1.29 x 10(-6) cm2/s, 0.956 x 10(-6) cm2/s, 0.569 x 10(-6) cm2/s, and 0.404 x 10(-6) cm2/s for griseofulvin-loaded micelles of SDS, CTAB, Tween 80, and Cremophor EL, respectively. At the highest surfactant concentrations studied, griseofulvin solubility increased 107-fold, 31-fold, fourfold, and threefold for SDS, CTAB, Tween 80, and Cremophor EL. Dissolution into SDS and CTAB were markedly enhanced, but only about one-third as much as solubility enhancement. Dissolution enhancement in the presence of SDS and CTAB were in excellent agreement with model predicted values, with prediction error less than 12%. The model predicted dissolution into Tween 80 and Cremophor EL to be minimally enhanced, as was observed, although the model underpredicted dissolution into these two neutral surfactants. The derived model predicted surfactant-mediated dissolution and reflects dissolution enhancement to be promoted by surfactant-enhanced solubility, but limited by the relatively slow diffusion of drug-loaded surfactant micelles.


Assuntos
Micelas , Tensoativos/química , Difusão , Griseofulvina/química , Preparações Farmacêuticas/química , Espalhamento de Radiação , Solubilidade
8.
Eur J Pharm Sci ; 16(4-5): 237-46, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12208453

RESUMO

The objectives of this study were (1) to investigate the transporter inhibition activity of three nonionic surfactants on P-glycoprotein, the human intestinal peptide transporter, and the monocarboxylic acid transporter in Caco-2 cell monolayers, and (2) to evaluate the role of membrane fluidity and protein kinase C in surfactant-induced transporter inhibition. All three surfactants inhibited P-glycoprotein (P-gp). Over a range from 0 to 1 mM, Tween 80 and Cremophor EL increased apical-to-basolateral permeability (AP-BL) and decreased basolateral-to-apical (BL-AP) permeability of the P-gp substrate rhodamine 123. Vitamin E TPGS's effect was equally large, but essentially only reduced the BL-AP permeability of rhodamine 123, and did so at a vitamin E TPGS concentration of only 0.025 mM. These P-gp inhibition effects would appear to be related to these excipients' modulation of membrane fluidity, where Tween 80 and Cremophor EL fluidized cell lipid bilayers, while vitamin E TPGS rigidized lipid bilayers. However, among the three surfactants, only Tween 80 inhibited the peptide transporter, as measured by glycyl sarcosine permeability. Likewise, only Cremophor EL inhibited the monocarboxylic acid transporter, as measured by benzoic acid permeability. Nevertheless, at least one of these three surfactants inhibited each P-gp, the human intestinal peptide transporter, and the monocarboxylic acid transporter. A common functional feature of these three surfactants was their ability to modulate fluidity, although results indicate that even strong membrane fluidity modulation alone was not sufficient to reduce transporter activity. N-octyl glucoside, a nonionic surfactant that did not modulate membrane fluidity, did not affect transporter functioning. Protein kinase C inhibitors failed to affect rhodamine 123 and glycyl sarcosine permeability, suggesting protein kinase C inhibition was not the mechanism of transporter inhibition. These results suggest that surfactants can inhibit multiple transporters but that changes in membrane fluidity may not be a generalized mechanism to reduce transporter activity.


Assuntos
Caderinas , Permeabilidade da Membrana Celular/efeitos dos fármacos , Glicerol/análogos & derivados , Fluidez de Membrana/efeitos dos fármacos , Moduladores de Transporte de Membrana , Proteínas de Membrana Transportadoras/antagonistas & inibidores , Tensoativos/farmacologia , Vitamina E/análogos & derivados , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Proteínas de Transporte/antagonistas & inibidores , Dipeptídeos/farmacocinética , Glicerol/farmacologia , Humanos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Polietilenoglicóis , Polissorbatos/farmacologia , Proteína Quinase C/antagonistas & inibidores , Rodamina 123/farmacocinética , Vitamina E/farmacologia
9.
Int J Pharm ; 237(1-2): 87-94, 2002 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-11955807

RESUMO

The objective of this work was to identify, using a statistical experimental design, the critical processing variables that affect content uniformity and loading of active agent coated on tablets in a 24" Accela-Cota. United States Pharmacopeia (USP) specifies that the % relative standard deviation (RSD) of drug content within a batch should be less than 6%. A Plackett-Burman experimental design was used to identify the process variables that influence the content uniformity and loading efficiency of the drug in the aqueous-based film coat of the tablets. The process variables investigated were inlet airflow, pan speed, inlet air temperature, coating time, atomization pressure, and fan pressure. Atomization pressure was identified as a major variable with respect to content uniformity (P<0.01). Pan speed and coating duration were also identified as variables significantly affecting content uniformity (P<0.05). Fan pressure was identified as a critical variable affecting recovery (P<<0.01). Temperature also significantly affected recovery (P<0.05). A good correlation was obtained between observed and predicted values for content uniformity (r(2)=0.85) and recovery (r(2)=0.95). It was possible to achieve % RSD less than 6% while maintaining the recovery at 80% or higher.


Assuntos
Modelos Estatísticos , Comprimidos com Revestimento Entérico/química , Tecnologia Farmacêutica/estatística & dados numéricos , Comprimidos com Revestimento Entérico/síntese química , Tecnologia Farmacêutica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...