Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Math Biosci Eng ; 17(1): 442-459, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31731360

RESUMO

It is well known that, for mass-action systems, complex-balanced equilibria are asymptotically stable. For generalized mass-action systems, even if there exists a unique complex-balanced equilibrium (in every stoichiometric class and for all rate constants), it need not be stable. We first discuss several notions of matrix stability (on a linear subspace) such as D-stability and diagonal stability, and then we apply abstract results on matrix stability to complex-balanced equilibria of generalized mass-action systems. In particular, we show that linear stability (on the stoichiometric subspace and for all rate constants) implies uniqueness. For cyclic networks, we characterize linear stability (in terms of D-stability of the Jacobian matrix); and for weakly reversible networks, we give necessary conditions for linear stability (in terms of D-semistability of the Jacobian matrices of all cycles in the network). Moreover, we show that, for classical mass-action systems, complex-balanced equilibria are not just asymptotically stable, but even diagonally stable (and hence linearly stable). Finally, we recall and extend characterizations of D-stability and diagonal stability for matrices of dimension up to three, and we illustrate our results by examples of irreversible cycles (of dimension up to three) and of reversible chains and S-systems (of arbitrary dimension).

2.
Bioinformatics ; 35(2): 266-273, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30649351

RESUMO

Motivation: Elementary flux mode (EFM) analysis allows an unbiased description of metabolic networks in terms of minimal pathways (involving a minimal set of reactions). To date, the enumeration of EFMs is impracticable in genome-scale metabolic models. In a complementary approach, we introduce the concept of a flux tope (FT), involving a maximal set of reactions (with fixed directions), which allows one to study the coordination of reaction directions in metabolic networks and opens a new way for EFM enumeration. Results: A FT is a (nontrivial) subset of the flux cone specified by fixing the directions of all reversible reactions. In a consistent metabolic network (without unused reactions), every FT contains a 'maximal pathway', carrying flux in all reactions. This decomposition of the flux cone into FTs allows the enumeration of EFMs (of individual FTs) without increasing the problem dimension by reaction splitting. To develop a mathematical framework for FT analysis, we build on the concepts of sign vectors and hyperplane arrangements. Thereby, we observe that FT analysis can be applied also to flux optimization problems involving additional (inhomogeneous) linear constraints. For the enumeration of FTs, we adapt the reverse search algorithm and provide an efficient implementation. We demonstrate that (biomass-optimal) FTs can be enumerated in genome-scale metabolic models of B.cuenoti and E.coli, and we use FTs to enumerate EFMs in models of M.genitalium and B.cuenoti. Availability and implementation: The source code is freely available at https://github.com/mpgerstl/FTA. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Redes e Vias Metabólicas , Software , Algoritmos , Escherichia coli , Análise do Fluxo Metabólico , Modelos Biológicos
3.
Metab Eng ; 47: 153-169, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29427605

RESUMO

BACKGROUND: The optimization of metabolic rates (as linear objective functions) represents the methodical core of flux-balance analysis techniques which have become a standard tool for the study of genome-scale metabolic models. Besides (growth and synthesis) rates, metabolic yields are key parameters for the characterization of biochemical transformation processes, especially in the context of biotechnological applications. However, yields are ratios of rates, and hence the optimization of yields (as nonlinear objective functions) under arbitrary linear constraints is not possible with current flux-balance analysis techniques. Despite the fundamental importance of yields in constraint-based modeling, a comprehensive mathematical framework for yield optimization is still missing. RESULTS: We present a mathematical theory that allows one to systematically compute and analyze yield-optimal solutions of metabolic models under arbitrary linear constraints. In particular, we formulate yield optimization as a linear-fractional program. For practical computations, we transform the linear-fractional yield optimization problem to a (higher-dimensional) linear problem. Its solutions determine the solutions of the original problem and can be used to predict yield-optimal flux distributions in genome-scale metabolic models. For the theoretical analysis, we consider the linear-fractional problem directly. Most importantly, we show that the yield-optimal solution set (like the rate-optimal solution set) is determined by (yield-optimal) elementary flux vectors of the underlying metabolic model. However, yield- and rate-optimal solutions may differ from each other, and hence optimal (biomass or product) yields are not necessarily obtained at solutions with optimal (growth or synthesis) rates. Moreover, we discuss phase planes/production envelopes and yield spaces, in particular, we prove that yield spaces are convex and provide algorithms for their computation. We illustrate our findings by a small example and demonstrate their relevance for metabolic engineering with realistic models of E. coli. CONCLUSIONS: We develop a comprehensive mathematical framework for yield optimization in metabolic models. Our theory is particularly useful for the study and rational modification of cell factories designed under given yield and/or rate requirements.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica , Modelos Biológicos
4.
Qual Theory Dyn Syst ; 17(2): 403-410, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30636938

RESUMO

Chemical reaction networks with generalized mass-action kinetics lead to power-law dynamical systems. As a simple example, we consider the Lotka reactions and the resulting planar ODE. We characterize the parameters (positive coefficients and real exponents) for which the unique positive equilibrium is a center.

5.
PLoS Comput Biol ; 13(4): e1005409, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28406903

RESUMO

Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks.


Assuntos
Metabolismo , Modelos Biológicos
6.
Front Genet ; 7: 90, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27252734

RESUMO

A fundamental result in metabolic pathway analysis states that every flux mode can be decomposed into a sum of elementary modes. However, only a decomposition without cancelations is biochemically meaningful, since a reversible reaction cannot have different directions in the contributing elementary modes. This essential requirement has been largely overlooked by the metabolic pathway community. Indeed, every flux mode can be decomposed into elementary modes without cancelations. The result is an immediate consequence of a theorem by Rockafellar which states that every element of a linear subspace is a conformal sum (a sum without cancelations) of elementary vectors (support-minimal vectors). In this work, we extend the theorem, first to "subspace cones" and then to general polyhedral cones and polyhedra. Thereby, we refine Minkowski's and Carathéodory's theorems, two fundamental results in polyhedral geometry. We note that, in general, elementary vectors need not be support-minimal; in fact, they are conformally non-decomposable and form a unique minimal set of conformal generators. Our treatment is mathematically rigorous, but suitable for systems biologists, since we give self-contained proofs for our results and use concepts motivated by metabolic pathway analysis. In particular, we study cones defined by linear subspaces and nonnegativity conditions - like the flux cone - and use them to analyze general polyhedral cones and polyhedra. Finally, we review applications of elementary vectors and conformal sums in metabolic pathway analysis.

7.
Biochem Soc Trans ; 43(6): 1195-200, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26614660

RESUMO

Based on recent theoretical results on optimal flux distributions in kinetic metabolic networks, we explore the congruences and differences between solutions of kinetic optimization problems and results obtained by constraint-based methods. We demonstrate that, for a certain resource allocation problem, kinetic optimization and standard flux balance analysis (FBA) give rise to qualitatively different results. Furthermore, we introduce a variant of FBA, called satFBA, whose predictions are in qualitative agreement with kinetic optimization.


Assuntos
Algoritmos , Análise do Fluxo Metabólico/métodos , Redes e Vias Metabólicas , Modelos Biológicos , Simulação por Computador , Cinética , Reprodutibilidade dos Testes
8.
J Theor Biol ; 347: 182-90, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24295962

RESUMO

The survival and proliferation of cells and organisms require a highly coordinated allocation of cellular resources to ensure the efficient synthesis of cellular components. In particular, the total enzymatic capacity for cellular metabolism is limited by finite resources that are shared between all enzymes, such as cytosolic space, energy expenditure for amino-acid synthesis, or micro-nutrients. While extensive work has been done to study constrained optimization problems based only on stoichiometric information, mathematical results that characterize the optimal flux in kinetic metabolic networks are still scarce. Here, we study constrained enzyme allocation problems with general kinetics, using the theory of oriented matroids. We give a rigorous proof for the fact that optimal solutions of the non-linear optimization problem are elementary flux modes. This finding has significant consequences for our understanding of optimality in metabolic networks as well as for the identification of metabolic switches and the computation of optimal flux distributions in kinetic metabolic networks.


Assuntos
Metabolismo , Modelos Teóricos , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA