Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36940893

RESUMO

ß-carotene-loaded nanoparticles improves absorption by increasing bioavailability. The Drosophila melanogaster model of Parkinson's disease must be helpful in investigating potential neuroprotective effects. Four groups of four-day-old flies were exposed to: (1) control; (2) diet containing rotenone (500 µM); (3) ß-carotene-loaded nanoparticles (20 µM); (4) ß-carotene-loaded nanoparticles and rotenone for 7 days. Then, the percentage of survival, geotaxis tests, open field, aversive phototaxis and food consumption were evaluated. At the end of the behaviors, the analyses of the levels of reactive species (ROS), thiobarbituric acid reactive substances (TBARS), catalase (CAT) and superoxide dismutase (SOD) activity was carried out, as well as an evaluation of the levels of dopamine and acetylcholinesterase (AChE) activity, in the head of flies. Nanoparticles loaded with ß-carotene were able to improve motor function, memory, survival and also restored the oxidative stress indicators (CAT, SOD, ROS and TBARS), dopamine levels, AChE activity after exposure to rotenone. Overall, nanoparticles loaded with ß-carotene showed significant neuroprotective effect against damage induced by the Parkinson-like disease model, emerging as a possible treatment. Overall, ß-carotene-loaded nanoparticles presented significant neuroprotective effect against damage induced by model of Parkinson-like disease, emerging as a possible treatment.


Assuntos
Nanopartículas , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/prevenção & controle , Drosophila melanogaster , beta Caroteno/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Dopamina , Rotenona , Espécies Reativas de Oxigênio , Fármacos Neuroprotetores/farmacologia , Substâncias Reativas com Ácido Tiobarbitúrico , Acetilcolinesterase/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Modelos Animais de Doenças
2.
Neurotoxicology ; 85: 79-89, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34000340

RESUMO

Neurodevelopmental disorders, such as Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD) are responsible for behavioral deficits in children. Imidacloprid is a nicotinic acetylcholine receptor agonist, capable of causing behavioral changes in Drosophila melanogaster, similar to the ADHD-like phenotypes. We assess whether behavioral damage induced by imidacloprid exposure in Drosophila melanogaster is associated with neurochemical changes and whether these changes are similar to those observed in neurodevelopmental disorders such as ASD and ADHD. The fruit flies were divided into four groups, exposed to either a standard diet (control) or a diet containing imidacloprid (200, 400 or 600 ρM) and allowed to mate for 7 days. After hatching, the progeny was subjected to in vivo and ex vivo tests. The ones exposed to imidacloprid showed an increase in hyperactivity, aggressiveness, anxiety and repetitive movements, as well as, a decrease in social interaction. Furthermore, exposure to imidacloprid decreased dopamine levels, cell viability and increased oxidative stress in the flies' progeny. These results demonstrated that the behavioral damage induced by imidacloprid exposure involves a reduction in dopamine levels and oxidative stress and that these neurochemical changes are in line with the events that occur in ASD and ADHD-like phenotypes in other models.


Assuntos
Dopamina/metabolismo , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Transtornos do Neurodesenvolvimento/induzido quimicamente , Transtornos do Neurodesenvolvimento/metabolismo , Nitrocompostos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Drosophila melanogaster , Feminino , Masculino , Estresse Oxidativo/fisiologia , Interação Social/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...