Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 394: 122532, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32200235

RESUMO

The use of asbestos-containing products has been banned in many countries since the beginning of the 80's due to its carcinogenic properties. However, asbestos is widely present in private and public buildings, resulting in the need to process a vast amount of asbestos-containing waste. Among the current technologies for the destruction of asbestos fibers, biodegradation by fungi, lichens, and, more recently, bacteria has been described. We previously reported the involvement of the bacterial siderophore pyoverdine in the release of iron from the two asbestos groups, serpentines and amphiboles. Among the large diversity encountered in the pyoverdine family, we examined whether these siderophores can alter flocking asbestos waste as well. All the tested pyoverdines were efficient in chrysotile-gypsum and amosite-gypsum weathering, although some exhibited higher iron dissolution. Iron was solubilized by pyoverdines from Pseudomonas aeruginosa and mandelii in a time-dependent manner from chrysotile-gypsum within 24 h. Renewal of pyoverdine-containing supernatant every 24 or 96 h allowed iron removal from chrysotile-gypsum at each cycle, until a limit was reached after 42 days of total incubation. Moreover, the dissolution was concentration-dependent, as demonstrated for the pyoverdine of P. mandelii. Pyoverdine-asbestos weathering could therefore become an innovative method to reduce anthropogenic waste.


Assuntos
Amianto Amosita/metabolismo , Asbestos Serpentinas/metabolismo , Ferro/metabolismo , Oligopeptídeos/metabolismo , Sideróforos/metabolismo , Águas Residuárias/química , Biodegradação Ambiental , Pseudomonas/metabolismo , Purificação da Água/métodos
2.
J Hazard Mater ; 385: 121563, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31776083

RESUMO

Asbestos, mineral present in soil, are highly toxic due to the presence of iron. Microbes-mineral interactions occur naturally through various processes leading to their alteration. We examined the effect of siderophore-producing Pseudomonas with a particular focus on the role of pyoverdine and pyochelin on raw asbestos fibers such as amosite, crocidolite and chrysotile. We compared the efficiency of pyoverdine to the iron chelating agent EDTA in the release of iron from raw asbestos fibers. Pyoverdine was able to extract iron from all the tested raw asbestos with the higher efficiency observed for chrysotile and crocidolite. When asbestos were grinded, the iron removal was more important for all types. We monitored the effect of bacterial growth and siderophores containing bacterial supernatant on raw asbestos dissolution by solution chemistry analysis and transmission electron microscopy. The siderophore-containing supernatant allowed a higher iron solubilisation than the one obtained after bacterial growth. Moreover, the iron dissolution was faster with pyoverdine-containing supernatant than pyochelin-containing supernatant, with approximately the same iron level for the maximum extraction with a delay of 48 h. Our study clearly showed the involvement of bacterial siderophores, pyoverdine and pyochelin on chrysotile, crocidolite and amosite fibers weathering.


Assuntos
Amianto Amosita/metabolismo , Asbesto Crocidolita/metabolismo , Asbestos Serpentinas/metabolismo , Ferro/metabolismo , Pseudomonas/metabolismo , Sideróforos/metabolismo , Biofilmes , Ácido Edético/química , Ferro/química , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Fenóis/química , Fenóis/metabolismo , Pseudomonas/fisiologia , Sideróforos/química , Tiazóis/química , Tiazóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...