Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813825

RESUMO

Methylation of histone H3 at lysine 36 (H3K36me3) marks active chromatin. The mark is interpreted by epigenetic readers that assist transcription and safeguard the integrity of the chromatin fiber. The chromodomain protein MSL3 binds H3K36me3 to target X-chromosomal genes in male Drosophila for dosage compensation. The PWWP-domain protein JASPer recruits the JIL1 kinase to active chromatin on all chromosomes. Unexpectedly, depletion of K36me3 had variable, locus-specific effects on the interactions of those readers. This observation motivated a systematic and comprehensive study of K36 methylation in a defined cellular model. Contrasting prevailing models, we found that K36me1, K36me2 and K36me3 each contribute to distinct chromatin states. A gene-centric view of the changing K36 methylation landscape upon depletion of the three methyltransferases Set2, NSD and Ash1 revealed local, context-specific methylation signatures. Set2 catalyzes K36me3 predominantly at transcriptionally active euchromatin. NSD places K36me2/3 at defined loci within pericentric heterochromatin and on weakly transcribed euchromatic genes. Ash1 deposits K36me1 at regions with enhancer signatures. The genome-wide mapping of MSL3 and JASPer suggested that they bind K36me2 in addition to K36me3, which was confirmed by direct affinity measurement. This dual specificity attracts the readers to a broader range of chromosomal locations and increases the robustness of their actions.

2.
Nat Commun ; 10(1): 5343, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767855

RESUMO

In flies, the chromosomal kinase JIL-1 is responsible for most interphase histone H3S10 phosphorylation and has been proposed to protect active chromatin from acquiring heterochromatic marks, such as dimethylated histone H3K9 (H3K9me2) and HP1. Here, we show that JIL-1's targeting to chromatin depends on a PWWP domain-containing protein JASPer (JIL-1 Anchoring and Stabilizing Protein). JASPer-JIL-1 (JJ)-complex is the major form of kinase in vivo and is targeted to active genes and telomeric transposons via binding of the PWWP domain of JASPer to H3K36me3 nucleosomes, to modulate transcriptional output. JIL-1 and JJ-complex depletion in cycling cells lead to small changes in H3K9me2 distribution at active genes and telomeric transposons. Finally, we identify interactors of the endogenous JJ-complex and propose that JIL-1 not only prevents heterochromatin formation but also coordinates chromatin-based regulation in the transcribed part of the genome.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Interfase , Metilação , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética
3.
EMBO Rep ; 20(8): e48138, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286660

RESUMO

In Drosophila melanogaster males, X-chromosome monosomy is compensated by chromosome-wide transcription activation. We found that complete dosage compensation during embryogenesis takes surprisingly long and is incomplete even after 10 h of development. Although the activating dosage compensation complex (DCC) associates with the X-chromosome and MOF acetylates histone H4 early, many genes are not compensated. Acetylation levels on gene bodies continue to increase for several hours after gastrulation in parallel with progressive compensation. Constitutive genes are compensated earlier than developmental genes. Remarkably, later compensation correlates with longer distances to DCC binding sites. This time-space relationship suggests that DCC action on target genes requires maturation of the active chromosome compartment.


Assuntos
Cromossomos de Insetos , Mecanismo Genético de Compensação de Dose , Drosophila melanogaster/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Cromossomo X , Acetilação , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Feminino , Gastrulação/genética , Dosagem de Genes , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino , Monossomia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ativação Transcricional
4.
Nucleic Acids Res ; 47(4): 1706-1724, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30541149

RESUMO

Transcription regulators select their genomic binding sites from a large pool of similar, non-functional sequences. Although general principles that allow such discrimination are known, the complexity of DNA elements often precludes a prediction of functional sites. The process of dosage compensation in Drosophila allows exploring the rules underlying binding site selectivity. The male-specific-lethal (MSL) Dosage Compensation Complex (DCC) selectively binds to some 300 X chromosomal 'High Affinity Sites' (HAS) containing GA-rich 'MSL recognition elements' (MREs), but disregards thousands of other MRE sequences in the genome. The DNA-binding subunit MSL2 alone identifies a subset of MREs, but fails to recognize most MREs within HAS. The 'Chromatin-linked adaptor for MSL proteins' (CLAMP) also interacts with many MREs genome-wide and promotes DCC binding to HAS. Using genome-wide DNA-immunoprecipitation we describe extensive cooperativity between both factors, depending on the nature of the binding sites. These are explained by physical interaction between MSL2 and CLAMP. In vivo, both factors cooperate to compete with nucleosome formation at HAS. The male-specific MSL2 thus synergises with a ubiquitous GA-repeat binding protein for refined X/autosome discrimination.


Assuntos
Cromossomos/genética , Proteínas de Ligação a DNA/genética , Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Sítios de Ligação/genética , Cromatina/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Genoma de Inseto/genética , Nucleossomos/genética , Ligação Proteica/genética , Cromossomo X
5.
Nat Commun ; 9(1): 4300, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327463

RESUMO

Chromatin structure and function is regulated by reader proteins recognizing histone modifications and/or histone variants. We recently identified that PWWP2A tightly binds to H2A.Z-containing nucleosomes and is involved in mitotic progression and cranial-facial development. Here, using in vitro assays, we show that distinct domains of PWWP2A mediate binding to free linker DNA as well as H3K36me3 nucleosomes. In vivo, PWWP2A strongly recognizes H2A.Z-containing regulatory regions and weakly binds H3K36me3-containing gene bodies. Further, PWWP2A binds to an MTA1-specific subcomplex of the NuRD complex (M1HR), which consists solely of MTA1, HDAC1, and RBBP4/7, and excludes CHD, GATAD2 and MBD proteins. Depletion of PWWP2A leads to an increase of acetylation levels on H3K27 as well as H2A.Z, presumably by impaired chromatin recruitment of M1HR. Thus, this study identifies PWWP2A as a complex chromatin-binding protein that serves to direct the deacetylase complex M1HR to H2A.Z-containing chromatin, thereby promoting changes in histone acetylation levels.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histona Desacetilases/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Proteínas Repressoras/metabolismo , Acetilação , Animais , Proteínas Cromossômicas não Histona/genética , Células HEK293 , Histona Desacetilases/genética , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Camundongos , Nucleossomos/metabolismo , RNA Interferente Pequeno , Proteínas Repressoras/genética , Transativadores
6.
EMBO Rep ; 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794204

RESUMO

X chromosome dosage compensation in Drosophila requires chromosome-wide coordination of gene activation. The male-specific lethal dosage compensation complex (DCC) identifies and binds to X-chromosomal high-affinity sites (HAS) from which it boosts transcription. A sub-class of HAS, PionX sites, represent first contacts on the X. Here, we explored the chromosomal interactions of representative PionX sites by high-resolution 4C and determined the global chromosome conformation by Hi-C in sex-sorted embryos. Male and female X chromosomes display similar nuclear architecture, concordant with clustered, constitutively active genes. PionX sites, like HAS, are evenly distributed in the active compartment and engage in short- and long-range interactions beyond compartment boundaries. Long-range, inter-domain interactions between DCC binding sites are stronger in males, suggesting that the complex refines chromatin organization. By de novo induction of DCC in female cells, we monitored the extent of activation surrounding PionX sites. This revealed a remarkable range of DCC action not only in linear proximity, but also at megabase distance if close in space, suggesting that DCC profits from pre-existing chromosome folding to activate genes.

7.
EMBO J ; 36(15): 2263-2279, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28645917

RESUMO

Replacement of canonical histones with specialized histone variants promotes altering of chromatin structure and function. The essential histone variant H2A.Z affects various DNA-based processes via poorly understood mechanisms. Here, we determine the comprehensive interactome of H2A.Z and identify PWWP2A as a novel H2A.Z-nucleosome binder. PWWP2A is a functionally uncharacterized, vertebrate-specific protein that binds very tightly to chromatin through a concerted multivalent binding mode. Two internal protein regions mediate H2A.Z-specificity and nucleosome interaction, whereas the PWWP domain exhibits direct DNA binding. Genome-wide mapping reveals that PWWP2A binds selectively to H2A.Z-containing nucleosomes with strong preference for promoters of highly transcribed genes. In human cells, its depletion affects gene expression and impairs proliferation via a mitotic delay. While PWWP2A does not influence H2A.Z occupancy, the C-terminal tail of H2A.Z is one important mediator to recruit PWWP2A to chromatin. Knockdown of PWWP2A in Xenopus results in severe cranial facial defects, arising from neural crest cell differentiation and migration problems. Thus, PWWP2A is a novel H2A.Z-specific multivalent chromatin binder providing a surprising link between H2A.Z, chromosome segregation, and organ development.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Mitose , Crista Neural/embriologia , Animais , Linhagem Celular , Humanos , Ligação Proteica , Xenopus/embriologia
8.
Elife ; 52016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27223324

RESUMO

PHF13 is a chromatin affiliated protein with a functional role in differentiation, cell division, DNA damage response and higher chromatin order. To gain insight into PHF13's ability to modulate these processes, we elucidate the mechanisms targeting PHF13 to chromatin, its genome wide localization and its molecular chromatin context. Size exclusion chromatography, mass spectrometry, X-ray crystallography and ChIP sequencing demonstrate that PHF13 binds chromatin in a multivalent fashion via direct interactions with H3K4me2/3 and DNA, and indirectly via interactions with PRC2 and RNA PolII. Furthermore, PHF13 depletion disrupted the interactions between PRC2, RNA PolII S5P, H3K4me3 and H3K27me3 and resulted in the up and down regulation of genes functionally enriched in transcriptional regulation, DNA binding, cell cycle, differentiation and chromatin organization. Together our findings argue that PHF13 is an H3K4me2/3 molecular reader and transcriptional co-regulator, affording it the ability to impact different chromatin processes.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Histonas/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Cromatografia em Gel , Cristalografia por Raios X , Regulação da Expressão Gênica , Humanos , Espectrometria de Massas , Camundongos , Ligação Proteica
9.
EMBO Rep ; 17(3): 455-69, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26781291

RESUMO

Old age is associated with a progressive decline of mitochondrial function and changes in nuclear chromatin. However, little is known about how metabolic activity and epigenetic modifications change as organisms reach their midlife. Here, we assessed how cellular metabolism and protein acetylation change during early aging in Drosophila melanogaster. Contrary to common assumptions, we find that flies increase oxygen consumption and become less sensitive to histone deacetylase inhibitors as they reach midlife. Further, midlife flies show changes in the metabolome, elevated acetyl-CoA levels, alterations in protein-notably histone-acetylation, as well as associated transcriptome changes. Based on these observations, we decreased the activity of the acetyl-CoA-synthesizing enzyme ATP citrate lyase (ATPCL) or the levels of the histone H4 K12-specific acetyltransferase Chameau. We find that these targeted interventions both alleviate the observed aging-associated changes and promote longevity. Our findings reveal a pathway that couples changes of intermediate metabolism during aging with the chromatin-mediated regulation of transcription and changes in the activity of associated enzymes that modulate organismal life span.


Assuntos
Drosophila melanogaster/metabolismo , Histonas/metabolismo , Longevidade , Processamento de Proteína Pós-Traducional , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Histonas/genética
10.
Mol Cell ; 53(5): 831-42, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24508391

RESUMO

Dynamically controlled posttranslational modifications of nucleosomal histones alter chromatin condensation to regulate transcriptional activation. We report that a nuclear tandem kinase, JIL-1, controls gene expression by activating poly(ADP-ribose) polymerase-1 (PARP-1). JIL-1 phosphorylates the C terminus of the H2Av histone variant, which stimulates PARP-1 enzymatic activity in the surrounding chromatin, leading to further modification of histones and chromatin loosening. The H2Av nucleosome has a higher surface representation of PARP-1 binding patch, consisting of H3 and H4 epitopes. Phosphorylation of H2Av by JIL-1 restructures this surface patch, leading to activation of PARP-1. Exposure of Val61 and Leu23 of the H4 histone is critical for PARP-1 binding on nucleosome and PARP-1 activation following H2Av phosphorylation. We propose that chromatin loosening and associated initiation of gene expression is activated by phosphorylation of H2Av in a nucleosome positioned in promoter regions of PARP-1-dependent genes.


Assuntos
Proteínas de Drosophila/química , Histonas/química , Nucleossomos/química , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/química , Animais , Cromatina/química , DNA/química , Drosophila/genética , Proteínas de Drosophila/metabolismo , Epitopos/química , Imuno-Histoquímica , Nuclease do Micrococo/metabolismo , Modelos Moleculares , Conformação Molecular , Fases de Leitura Aberta , Fosforilação , Poli(ADP-Ribose) Polimerase-1 , Poli Adenosina Difosfato Ribose/genética , Regiões Promotoras Genéticas , Conformação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
11.
PLoS Genet ; 7(3): e1001327, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21423663

RESUMO

The ubiquitous tandem kinase JIL-1 is essential for Drosophila development. Its role in defining decondensed domains of larval polytene chromosomes is well established, but its involvement in transcription regulation has remained controversial. For a first comprehensive molecular characterisation of JIL-1, we generated a high-resolution, chromosome-wide interaction profile of the kinase in Drosophila cells and determined its role in transcription. JIL-1 binds active genes along their entire length. The presence of the kinase is not proportional to average transcription levels or polymerase density. Comparison of JIL-1 association with elongating RNA polymerase and a variety of histone modifications suggests two distinct targeting principles. A basal level of JIL-1 binding can be defined that correlates best with the methylation of histone H3 at lysine 36, a mark that is placed co-transcriptionally. The additional acetylation of H4K16 defines a second state characterised by approximately twofold elevated JIL-1 levels, which is particularly prominent on the dosage-compensated male X chromosome. Phosphorylation of the histone H3 N-terminus by JIL-1 in vitro is compatible with other tail modifications. In vivo, phosphorylation of H3 at serine 10, together with acetylation at lysine 14, creates a composite histone mark that is enriched at JIL-1 binding regions. Its depletion by RNA interference leads to a modest, but significant, decrease of transcription from the male X chromosome. Collectively, the results suggest that JIL-1 participates in a complex histone modification network that characterises active, decondensed chromatin. We hypothesise that one specific role of JIL-1 may be to reinforce, rather than to establish, the status of active chromatin through the phosphorylation of histone H3 at serine 10.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Serina-Treonina Quinases/genética , Transcrição Gênica , Ativação Transcricional , Animais , Linhagem Celular , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila/metabolismo , Feminino , Genes de Insetos , Genes Reporter , Genes Ligados ao Cromossomo X , Loci Gênicos , Histonas/metabolismo , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Polimerase II/metabolismo , Cromossomo X/metabolismo
12.
PLoS One ; 5(4): e10042, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20386606

RESUMO

The histone methyltransferase SU(VAR)3-9 plays an important role in the formation of heterochromatin within the eukaryotic nucleus. Several studies have shown that the formation of condensed chromatin is highly regulated during development, suggesting that SU(VAR)3-9's activity is regulated as well. However, no mechanism by which this may be achieved has been reported so far. As we and others had shown previously that the N-terminus of SU(VAR)3-9 plays an important role for its activity, we purified interaction partners from Drosophila embryo nuclear extract using as bait a GST fusion protein containing the SU(VAR)3-9 N-terminus. Among several other proteins known to bind Su(VAR)3-9 we isolated the chromosomal kinase JIL-1 as a strong interactor. We show that SU(VAR)3-9 is a substrate for JIL-1 in vitro as well as in vivo and map the site of phosphorylation. These findings may provide a molecular explanation for the observed genetic interaction between SU(VAR)3-9 and JIL-1.


Assuntos
Proteínas de Drosophila/metabolismo , Metiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas
13.
Nucleic Acids Res ; 36(3): 950-62, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18086708

RESUMO

Loss of function of the RNA helicase maleless (MLE) in Drosophila melanogaster leads to male-specific lethality due to a failure of X chromosome dosage compensation. MLE is presumably involved in incorporating the non-coding roX RNA into the dosage compensation complex (DCC), which is an essential but poorly understood requirement for faithful targeting of the complex to the X chromosome. Sequence comparison predicts several RNA-binding domains in MLE but their properties have not been experimentally verified. We evaluated the RNA-binding characteristics of these conserved motifs and their contributions to RNA-stimulated ATPase activity, to helicase activity, as well as to the targeting of MLE to the nucleus and to the X chromosome territory. We find that RB2 is the dominant, conditional RNA-binding module, which is indispensable for ATPase and helicase activity whereas the N-terminal RB1 motif does not bind RNA, but is involved in targeting MLE to the X chromosome. The C-terminal domain containing a glycine-rich heptad repeat adds potential dimerization and RNA-binding surfaces which are not required for helicase activity.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , RNA Helicases/química , RNA Helicases/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Nucleotídeos de Adenina/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Mutação , Estrutura Terciária de Proteína , RNA/química , RNA/metabolismo , RNA Helicases/genética , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Cromossomo X/química
14.
Mol Cell Biol ; 25(14): 5947-54, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15988010

RESUMO

The male-specific-lethal (MSL) proteins in Drosophila melanogaster serve to adjust gene expression levels in male flies containing a single X chromosome to equal those in females with a double dose of X-linked genes. Together with noncoding roX RNA, MSL proteins form the "dosage compensation complex" (DCC), which interacts selectively with the X chromosome to restrict the transcription-activating histone H4 acetyltransferase MOF (males-absent-on-the-first) to that chromosome. We showed previously that MSL3 is essential for the activation of MOF's nucleosomal histone acetyltransferase activity within an MSL1-MOF complex. By characterizing the MSL3 domain structure and its associated functions, we now found that the nucleic acid binding determinants reside in the N terminus of MSL3, well separable from the C-terminal MRG signatures that form an integrated domain required for MSL1 interaction. Interaction with MSL1 mediates the activation of MOF in vitro and the targeting of MSL3 to the X-chromosomal territory in vivo. An N-terminal truncation that lacks the chromo-related domain and all nucleic acid binding activity is able to trigger de novo assembly of the DCC and establishment of an acetylated X-chromosome territory.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Cromossomo X/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Ativação Enzimática , Histona Acetiltransferases , Mutação , Proteínas Nucleares/genética , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Cromossomo X/química
15.
Science ; 308(5729): 1758-62, 2005 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-15890843

RESUMO

Polyglutamylation of tubulin has been implicated in several functions of microtubules, but the identification of the responsible enzyme(s) has been challenging. We found that the neuronal tubulin polyglutamylase is a protein complex containing a tubulin tyrosine ligase-like (TTLL) protein, TTLL1. TTLL1 is a member of a large family of proteins with a TTL homology domain, whose members could catalyze ligations of diverse amino acids to tubulins or other substrates. In the model protist Tetrahymena thermophila, two conserved types of polyglutamylases were characterized that differ in substrate preference and subcellular localization.


Assuntos
Domínio Catalítico , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Ácido Poliglutâmico/química , Ácido Poliglutâmico/metabolismo , Tetrahymena thermophila/enzimologia , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Encéfalo/enzimologia , Cílios/fisiologia , Humanos , Camundongos , Microtúbulos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Movimento , Peptídeo Sintases/genética , Peptídeo Sintases/isolamento & purificação , Filogenia , Ácido Poliglutâmico/genética , Ácido Poliglutâmico/isolamento & purificação , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/isolamento & purificação
16.
J Cell Sci ; 116(Pt 20): 4181-90, 2003 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12972506

RESUMO

Polyglutamylation is a post-translational modification initially discovered on tubulin. It has been implicated in multiple microtubule functions, including neuronal differentiation, axonemal beating and stability of the centrioles, and shown to modulate the interaction between tubulin and microtubule associated proteins. The enzymes catalysing this modification are not yet known. Starting with a partially purified fraction of mouse brain tubulin polyglutamylase, monoclonal antibodies were raised and used to further purify the enzyme by immunoprecipitation. The purified enzyme complex (Mr 360x103) displayed at least three major polypeptides of 32, 50 and 80x103, present in stochiometric amounts. We show that the 32x103 subunit is encoded by the mouse gene GTRGEO22, the mutation of which has recently been implicated in multiple defects in mice, including male sterility. We demonstrate that this subunit, called PGs1, has no catalytic activity on its own, but is implicated in the localisation of the enzyme at major sites of polyglutamylation, i.e. neurones, axonemes and centrioles.


Assuntos
Centríolos/metabolismo , Microtúbulos/metabolismo , Ácido Poliglutâmico/metabolismo , Subunidades Proteicas/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Células Cultivadas , Camundongos , Neurônios , Peptídeo Sintases , Ligação Proteica , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...