Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 169(6): 120, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753261

RESUMO

Gyroviruses are small single-stranded DNA (ssDNA) viruses that are largely associated with birds. Chicken anemia virus is the most extensively studied gyrovirus due to its disease impact on the poultry industry. However, we know much less about gyroviruses infecting other avian species. To investigate gyroviruses infecting waterfowl, we determined six complete genome sequences that fall into three gyrovirus groups, referred to as waterfowl gyrovirus 1 (n = 3), 2 (n = 2), and 3 (n = 1), in organs from hunter-harvested waterfowl from Arizona (USA). The waterfowl gyrovirus 1 variants were identified in multiple organs of a single American wigeon and represent a tentative new species. The waterfowl gyrovirus 2 variants were identified in the livers of two American wigeons and share >70% VP1 nucleotide sequence identity with gyrovirus 9, previously identified in the spleen of a Brazilian Pekin duck (MT318123) and a human fecal sample (KP742975). Waterfowl gyrovirus 3 was identified in a northern pintail spleen sample, and it shares >73% VP1 nucleotide sequence identity with two gyrovirus 13 sequences previously identified in Brazilian Pekin duck spleens (MT318125 and MT318127). These gyroviruses are the first to be identified in waterfowl in North America, as well as in American wigeons and northern pintails.


Assuntos
Doenças das Aves , Infecções por Circoviridae , Genoma Viral , Gyrovirus , Filogenia , Animais , Arizona , Genoma Viral/genética , Gyrovirus/genética , Gyrovirus/classificação , Gyrovirus/isolamento & purificação , Doenças das Aves/virologia , Infecções por Circoviridae/virologia , Infecções por Circoviridae/veterinária , Anseriformes/virologia , Patos/virologia , DNA Viral/genética
2.
Virology ; 594: 110064, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38522135

RESUMO

Papillomaviruses (family Papillomaviridae) are non-enveloped, circular, double-stranded DNA viruses known to infect squamous and mucosal epithelial cells. In the family Papillomaviridae there are 53 genera and 133 viral species whose members infect a variety of mammalian, avian, reptilian, and fish species. Within the Antarctic context, papillomaviruses (PVs) have been identified in Adélie penguins (Pygoscelis adeliae, 2 PVs), Weddell seals (Leptonychotes weddellii, 7 PVs), and emerald notothen (Trematomus bernacchii, 1 PV) in McMurdo Sound and Ross Island in eastern Antarctica. Here we identified 13 diverse PVs from buccal swabs of Antarctic fur seals (Arctocephalus gazella, 2 PVs) and leopard seal (Hydrurga leptonyx, 3 PVs) in western Antarctica (Antarctic Peninsula), and vaginal and nasal swabs of Weddell seals (8 PVs) in McMurdo Sound. These PV genomes group into four genera representing 11 new papillomavirus types, of which five are from two Antarctic fur seals and a leopard seal and six from Weddell seals.


Assuntos
Otárias , Focas Verdadeiras , Animais , Feminino , Regiões Antárticas , Aves , Papillomaviridae/genética
3.
Viruses ; 16(1)2023 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-38257737

RESUMO

The Papillomaviridae are a family of vertebrate-infecting viruses of oncogenic potential generally thought to be host species- and tissue-specific. Despite their phylogenetic relatedness to humans, there is a scarcity of data on papillomaviruses (PVs) in speciose non-human primate lineages, particularly the lemuriform primates. Varecia variegata (black-and-white ruffed lemurs) and Varecia rubra (red ruffed lemurs), two closely related species comprising the Varecia genus, are critically endangered with large global captive populations. Varecia variegata papillomavirus (VavPV) types -1 and -2, the first PVs in lemurs with a fully identified genome, were previously characterized from captive V. variegata saliva. To build upon this discovery, saliva samples were collected from captive V. rubra with the following aims: (1) to identify PVs shared between V. variegata and V. rubra and (2) to characterize novel PVs in V. rubra to better understand PV diversity in the lemuriform primates. Three complete PV genomes were determined from V. rubra samples. Two of these PV genomes share 98% L1 nucleotide identity with VavPV2, denoting interspecies infection of V. rubra by VavPV2. This work represents the first reported case of interspecies PV infection amongst the strepsirrhine primates. The third PV genome shares <68% L1 nucleotide identity with that of all PVs. Thus, it represents a new PV species and has been named Varecia rubra papillomavirus 1 (VarPV1). VavPV1, VavPV2, and VarPV1 form a new clade within the Papillomaviridae family, likely representing a novel genus. Future work diversifying sample collection (i.e., lemur host species from multiple genera, sample type, geographic location, and wild populations) is likely to uncover a world of diverse lemur PVs.


Assuntos
Lemur , Lemuridae , Strepsirhini , Viroses , Animais , Nucleotídeos , Papillomaviridae/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...