Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Phytoremediation ; : 1-12, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008081

RESUMO

Soil salinity is a significant abiotic stress and poses risks to environmental sustainability. Thus, the improvement of the time for recovering the salt-affect soil is crucial for the phytoextraction process using halophytes plants, especially regarding on nutritional management. We evaluated the responses of Atriplex nummularia Lindl. to nitrogen (N) and phosphorus (P) under different salinity levels. The treatments comprised doses of N (N1 = 80 kg ha-1) and P (P1 = 60 kg ha-1): (1) without N and P (N0P0) (control); (2) with N and without P (N1P0); (3) without N and with P (N0P1); and (4) with N and P (N1P1) and five levels of electrical conductivity from irrigation water: 0.08, 1.7, 4.8, 8.6, and 12.5 dS m-1. The. We evaluated dry biomass of leaves, stems, and roots 93 days after transplantation. We also assessed the leaf and osmotic water potential, the osmotic adjustment, and the nutrient contents (N, P, Na, and K). N application increased 22.3, 17.8, and 32.8% the leaf biomass, stem biomass, and osmotic adjustment, respectively; and consequently, boosts Na extraction in 27.8%. Thus, the time of the phytoextraction process can be improved with N fertilizer at a rate of 80 kg ha-1.


Very few studies have investigated the nutrient dynamics responses in Atriplex species in salt-affected soils; thus, this study represents a novelty. We tested the management of nitrogen (N) and phosphate (P) fertilizers to increase crop yield and optimize the phytoextraction process in salt-affected soils. We believe our results contribute to the improvement of the knowledge of this relevant topic, mainly in terms of the recovery of areas degraded by salinity. There is a paucity of studies associating salinity and nutritional management of soils worldwide.

2.
Plant Physiol Biochem ; 155: 177-186, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32771929

RESUMO

Vesicular trichomes play a key role in excluding toxic ions from some halophyte species, preventing the essential processes and functions of plants from being altered. Thus, the present study aimed to evaluate the influence of these structures on Atriplex nummularia irrigated using waters with three levels of osmotic potential (-0.1, -1.4 and -2.7 MPa), formulated with NaCl in plants with vesicular trichomes and plants with partial removal of trichomes. The experiment was conducted in a protected environment and plants were evaluated for physiological parameters (water, osmotic and pressure potentials, relative water content, osmotic adjustment, pressure-volume curve, gas exchange), electrolyte leakage, lipid peroxidation and enzymatic activity (superoxide dismutase, ascorbate peroxidase, catalase). The results obtained made it possible to identify the strong contribution of vesicular trichomes to physiological and biochemical parameters, with indication of cell wall stiffening and maintenance of turgor. Furthermore, the evaluation of the osmotic potentials obtained in the study suggests that the contribution of vesicular trichomes to the salinity tolerance of the species is greater than that of osmotic adjustment. Furthermore, gas exchange results suggest that the presence of trichomes was able to regulate stomatal processes so that the plant maintains its photosynthetic performance. Evaluation of electrolyte leakage, together with the increase in malondialdehyde content, showed that the maintenance of trichomes reduces the probability of oxidative stress. The activity of antioxidant enzymes was efficient in eliminating reactive oxygen species, especially the activity of ascorbate peroxidase, which stood out in terms of hydrogen peroxide detoxification.


Assuntos
Atriplex/fisiologia , Parede Celular/fisiologia , Pressão Osmótica , Fotossíntese , Tricomas/fisiologia , Antioxidantes/fisiologia , Atriplex/enzimologia , Elasticidade , Peróxido de Hidrogênio , Folhas de Planta , Espécies Reativas de Oxigênio , Plantas Tolerantes a Sal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...