Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1242831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886674

RESUMO

Human temporal bones (HTBs) are invaluable resources for the study of otologic disorders and for evaluating novel treatment approaches. Given the high costs and technical expertise required to collect and process HTBs, there has been a decline in the number of otopathology laboratories. Our objective is to encourage ongoing study of HTBs by outlining the necessary steps to establish a pipeline for collection and processing of HTBs. In this methods manuscript, we: (1) provide the design of a temporal bone plug sawblade that can be used to collect specimens from autopsy donors; (2) establish that decalcification time can be dramatically reduced from 9 to 3 months if ethylenediaminetetraacetic acid is combined with microwave tissue processing and periodic bone trimming; (3) show that serial sections of relatively-rapidly decalcified HTBs can be successfully immunostained for key inner ear proteins; (4) demonstrate how to drill down a HTB to the otic capsule within a few hours so that subsequent decalcification time can be further reduced to only weeks. We include photographs and videos to facilitate rapid dissemination of the developed methods. Collected HTBs can be used for many purposes, including, but not limited to device testing, imaging studies, education, histopathology, and molecular studies. As new technology develops, it is imperative to continue studying HTBs to further our understanding of the cellular and molecular underpinnings of otologic disorders.

2.
JCI Insight ; 7(12)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35730564

RESUMO

Thick, viscous respiratory secretions are a major pathogenic feature of COVID-19, but the composition and physical properties of these secretions are poorly understood. We characterized the composition and rheological properties (i.e., resistance to flow) of respiratory secretions collected from intubated COVID-19 patients. We found the percentages of solids and protein content were greatly elevated in COVID-19 compared with heathy control samples and closely resembled levels seen in cystic fibrosis, a genetic disease known for thick, tenacious respiratory secretions. DNA and hyaluronan (HA) were major components of respiratory secretions in COVID-19 and were likewise abundant in cadaveric lung tissues from these patients. COVID-19 secretions exhibited heterogeneous rheological behaviors, with thicker samples showing increased sensitivity to DNase and hyaluronidase treatment. In histologic sections from these same patients, we observed increased accumulation of HA and the hyaladherin versican but reduced tumor necrosis factor-stimulated gene-6 staining, consistent with the inflammatory nature of these secretions. Finally, we observed diminished type I interferon and enhanced inflammatory cytokines in these secretions. Overall, our studies indicated that increases in HA and DNA in COVID-19 respiratory secretion samples correlated with enhanced inflammatory burden and suggested that DNA and HA may be viable therapeutic targets in COVID-19 infection.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , Pulmão , SARS-CoV-2 , Escarro
3.
medRxiv ; 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35411348

RESUMO

Thick, viscous respiratory secretions are a major pathogenic feature of COVID-19 disease, but the composition and physical properties of these secretions are poorly understood. We characterized the composition and rheological properties (i.e. resistance to flow) of respiratory secretions collected from intubated COVID-19 patients. We find the percent solids and protein content are greatly elevated in COVID-19 compared to heathy control samples and closely resemble levels seen in cystic fibrosis, a genetic disease known for thick, tenacious respiratory secretions. DNA and hyaluronan (HA) are major components of respiratory secretions in COVID-19 and are likewise abundant in cadaveric lung tissues from these patients. COVID-19 secretions exhibit heterogeneous rheological behaviors with thicker samples showing increased sensitivity to DNase and hyaluronidase treatment. In histologic sections from these same patients, we observe increased accumulation of HA and the hyaladherin versican but reduced tumor necrosis factorâ€"stimulated gene-6 (TSG6) staining, consistent with the inflammatory nature of these secretions. Finally, we observed diminished type I interferon and enhanced inflammatory cytokines in these secretions. Overall, our studies indicate that increases in HA and DNA in COVID-19 respiratory secretion samples correlate with enhanced inflammatory burden and suggest that DNA and HA may be viable therapeutic targets in COVID-19 infection.

4.
medRxiv ; 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32935110

RESUMO

Thick, viscous respiratory secretions are a major pathogenic feature of COVID-19 disease, but the composition and physical properties of these secretions are poorly understood. We characterized the composition and rheological properties (i.e. resistance to flow) of respiratory secretions collected from intubated COVID-19 patients. We found the percent solids and protein content are all greatly elevated in COVID-19 compared to heathy control samples and closely resemble levels seen in cystic fibrosis (CF), a genetic disease known for thick, tenacious respiratory secretions. DNA and hyaluronan are major components of respiratory secretions in COVID-19 and are likewise abundant in cadaveric lung tissues from these patients. COVID-19 secretions exhibited heterogeneous rheological behaviors with thicker samples showing increased sensitivity to DNase and hyaluronidase treatment. These results highlight the dramatic biophysical properties of COVID-19 respiratory secretions and suggest that DNA and hyaluronan may be viable therapeutic targets in COVID-19 infection.

5.
Acad Pathol ; 4: 2374289517715040, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28815204

RESUMO

Current medical school curricula predominantly facilitate early integration of basic science principles into clinical practice to strengthen diagnostic skills and the ability to make treatment decisions. In addition, they promote life-long learning and understanding of the principles of medical practice. The Pathology Competencies for Medical Education (PCME) were developed in response to a call to action by pathology course directors nationwide to teach medical students pathology principles necessary for the practice of medicine. The PCME are divided into three competencies: 1) Disease Mechanisms and Processes, 2) Organ System Pathology, and 3) Diagnostic Medicine and Therapeutic Pathology. Each of these competencies is broad and contains multiple learning goals with more specific learning objectives. The original competencies were designed to be a living document, meaning that they will be revised and updated periodically, and have undergone their first revision with this publication. The development of teaching cases, which have a classic case-based design, for the learning objectives is the next step in providing educational content that is peer-reviewed and readily accessible for pathology course directors, medical educators, and medical students. Application of the PCME and cases promotes a minimum standard of exposure of the undifferentiated medical student to pathophysiologic principles. The publication of the PCME and the educational cases will create a current educational resource and repository published through Academic Pathology.

7.
AMIA Annu Symp Proc ; 2009: 386-90, 2009 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-20351885

RESUMO

To address the problem of extracting structured information from pathology reports for research purposes in the STRIDE Clinical Data Warehouse, we adapted the ChartIndex Medical Language Processing system to automatically identify and map anatomic and diagnostic noun phrases found in full-text pathology reports to SNOMED CT concept descriptors. An evaluation of the system's performance showed a positive predictive value for anatomic concepts of 92.3% and positive predictive value for diagnostic concepts of 84.4%. The experiment also suggested strategies for improving ChartIndex's performance coding pathology reports.


Assuntos
Codificação Clínica/métodos , Registros Eletrônicos de Saúde/classificação , Processamento de Linguagem Natural , Patologia Cirúrgica , Systematized Nomenclature of Medicine , Unified Medical Language System , Humanos
8.
J Biomed Mater Res B Appl Biomater ; 87(2): 440-6, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18536041

RESUMO

In vitro models are important investigative tools in understanding the biological processes involved in wear-particle-induced chronic inflammation and periprosthetic osteolysis. In the clinical scenario, particles are produced and delivered continuously over extended periods of time. Previously, we quantified the delivery of both polystyrene and polyethylene particles over 2- and 4-week time periods using osmotic pumps and collection tubes. In the present study, we used explanted mice femora in organ culture and showed that continuous intramedullary delivery of submicron-sized polymer particles using osmotic pumps is feasible. Furthermore, infusion of 2.60 x 10(11) particles per mL (intermediate concentration) of ultrahigh molecular weight polyethylene (UHMWPE) for 2 weeks and 8.06 x 10(11) particles per mL (high concentration) UHMWPE for 4 weeks both yielded significantly higher scores for bone loss when compared with controls in which only mouse serum was infused.


Assuntos
Fêmur/cirurgia , Modelos Animais , Polímeros/administração & dosagem , Animais , Infusões Parenterais , Masculino , Teste de Materiais , Camundongos , Camundongos Endogâmicos C57BL
9.
J Biomed Mater Res B Appl Biomater ; 71(2): 360-6, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15389497

RESUMO

Wear debris from total joint replacement prostheses is implicated in periprosthetic osteolysis and implant loosening. The pathophysiology of this biological process remains unclear. Animal models of particle-induced osteolysis have proven useful in the study of specific tissue responses to wear debris. However, existing in vivo murine models of particle-mediated inflammation do not permit analysis of cortical bone degradation. This study describes a murine model of particle disease using an intramedullary rod in the mouse femur to parallel the clinical situation. The model consists of placing a 10-mm-long Kirschner wire retrograde in both femurs of C57b1/6 male mice via a medial parapatellar arthrotomy. Phagocytosable titanium particles were also implanted unilaterally to replicate generation of wear debris. Mice were sacrificed at 2, 10, and 26 weeks and whole femurs were cultured for 72 h. Levels of interleukin-6, monocyte chemotactic protein-1, and macrophage colony stimulating factor were assayed by ELISA. Transverse histological sections, at the level of the implant, were taken and stained with hematoxylin and eosin (H&E). Results demonstrated increased expression of proinflammatory mediators at 2 weeks in femora with rod and particles compared to femora with rods alone. Destruction of the endosteum was evident at 2, 10, and 26 weeks in the femora with titanium. This novel murine model of particle-induced intramedullary inflammation may facilitate cost-effective genetic studies and offers investigators a simple, clinically relevant intramedullary model to readily examine the pathogenesis of particle-mediated periprosthetic osteolysis.


Assuntos
Fêmur/patologia , Mediadores da Inflamação/metabolismo , Osteólise/patologia , Titânio/toxicidade , Animais , Materiais Biocompatíveis , Quimiocina CCL2/biossíntese , Ensaio de Imunoadsorção Enzimática , Fêmur/diagnóstico por imagem , Histocitoquímica , Interleucina-6/biossíntese , Fator Estimulador de Colônias de Macrófagos/biossíntese , Camundongos , Técnicas de Cultura de Órgãos , Osteólise/diagnóstico por imagem , Próteses e Implantes , Radiografia , Aço Inoxidável , Fator de Necrose Tumoral alfa/biossíntese
10.
J Biomed Mater Res A ; 65(4): 454-61, 2003 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12761835

RESUMO

Osseointegration of porous-coated implants during revision arthroplasty procedures is often impeded due to the presence of residual granuloma, particulate debris, and a sclerotic, dysvascular bone bed. We hypothesized that local infusion of recombinant fibroblast growth factor (FGF-2) would increase bone ingrowth in an in vivo model of tissue differentiation in the rabbit tibia in the presence of phagocytosable polyethylene particles. A drug test chamber (DTC) was implanted in the proximal medial tibial metaphysis of mature rabbits unilaterally. The chamber contained a 1x 1 x 5-mm tunnel for tissue ingrowth, and was connected to an osmotic diffusion pump. FGF-2 was infused at dosages of 0, 0.5, 5, 50, or 500 ng/day for a 3-week period, with subsequent harvesting of the ingrown tissue after each 3-week treatment. The effects of ultrahigh molecular weight polyethylene particles (0.5-microm diameter) on tissue ingrowth were determined by adding particles to the chamber at concentrations of 5.8 x 10(11) (low dose) or 1.7 x 10(12) (high dose) particles/mL, with and without infusion of 50 ng/day of FGF for 3 weeks. The tissue forming in the chamber was harvested after each treatment for histologic processing and morphometric analysis of bone ingrowth. Statistical analysis was performed using parametric tests (ANOVA), nonparametric tests (Kruskal-Wallis test) and post hoc tests. In the absence of particles, infusion of 50 ng FGF-2 per day yielded the greatest amount of bone ingrowth. The high dose of particles suppressed bone ingrowth into the chamber, but the low dose particles did not (p = 0.0002, 95% confidence limits = 9.19-18.80). Infusion of 50 ng FGF-2 per day significantly increased net bone formation in the presence of high-dose UHMWPE particles (p = 0.039, 95% confidence limits = 1.41-6.79). There was a trend for decreased numbers of vitronectin-receptor positive (osteoclast-like) cells with the addition of FGF-2, compared to particles alone (p = 0.08). Local delivery of FGF-2 may prove useful in mitigating the adverse effects of wear debris (e.g., in treating early osteolytic lesions), and facilitating osseointegration of revision total joint replacements in situations where the bone bed is suboptimal and residual particles and granulomatous tissue are present.


Assuntos
Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Osseointegração/efeitos dos fármacos , Animais , Materiais Biocompatíveis , Cultura em Câmaras de Difusão , Humanos , Técnicas In Vitro , Infusões Intraósseas , Teste de Materiais , Polietileno , Coelhos
11.
J Biomed Mater Res A ; 65(1): 43-50, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12635153

RESUMO

Interleukin-10 (IL-10) is a cytokine that plays a major role in suppressing the inflammatory response, particularly cell-mediated immunity that is characteristic of the TH1 response. The purpose of this study was to determine whether local infusion of IL-10 could mitigate the suppression of bone ingrowth associated with polyethylene wear particles. Drug test chambers were implanted in the proximal tibia of 20 mature New Zealand White rabbits. The DTC provided a continuous 1 x 1 x 5-mm canal for tissue ingrowth. After a 6-week period for osseointegration, the DTC was then connected to an osmotic diffusion pump. IL-10 at doses of 0.1-100 ng/mL (0.25 microL/h) was infused with or without ultra-high molecular weight polyethylene particles (0.5 +/- 0.2 microm diameter, 10(12) particles/mL) present in the chamber for a 3- or 6-week period. The tissue in the chamber was harvested after each treatment; sections were stained with hematoxylin and eosin for morphometric analysis. Osteoclast-like cells were identified by immunohistochemical staining using a monoclonal antibody directed against the alpha chain of the vitronectin receptor, CD51. Osteoblasts were identified using alkaline phosphatase staining. In dose-response studies, infusion of 1 ng/mL IL-10 yielded the greatest bone ingrowth in the presence of particles. The addition of polyethylene particles evoked a marked foreign body reaction and fibrosis; bone ingrowth was significantly suppressed (p = 0.0003). Bone ingrowth was increased by over 48% with infusion of IL-10 for the final 3 weeks of a 6-week ultra-high molecular weight polyethylene particle exposure compared with particles alone (p = 0.027). IL-10 is a cytokine that plays a major role in suppressing the inflammatory response, especially cell-mediated immunity that is characteristic of the TH1 response. Local infusion of immune-modulating cytokines such as IL-10 may prove to be useful in abating particle-induced periprosthetic osteolysis.


Assuntos
Desenvolvimento Ósseo/fisiologia , Interleucina-10/farmacologia , Polietilenos/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Desenvolvimento Ósseo/efeitos dos fármacos , Cultura em Câmaras de Difusão , Relação Dose-Resposta a Droga , Imuno-Histoquímica , Integrina alfaV/metabolismo , Masculino , Osteoblastos/fisiologia , Tamanho da Partícula , Coelhos , Proteínas Recombinantes/farmacologia , Células Th1/imunologia , Tíbia/crescimento & desenvolvimento , Titânio
12.
J Rheumatol ; 30(12): 2547-52, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14719192

RESUMO

OBJECTIVE: To test the in vivo effects of interleukin 1 receptor antagonist (IL-1ra) on bone formation and tissue ingrowth using an implantable bone ingrowth chamber that can be infused with test solutions. METHODS: The bone ingrowth chamber was implanted in the proximal tibia of 10 mature NZW rabbits unilaterally. After an initial osseointegration period, the chambers were emptied of tissue and infused with either 0.05% bovine serum albumin (BSA) in phosphate buffered saline (PBS) or an IL-1ra solution for 4-week periods, which were separated by 4-week periods of no infusion. Tissue samples harvested from each chamber were snap-frozen and examined by histology and immunohistochemistry. RESULTS: The chambers were filled with longitudinally-oriented woven bone in a fibrovascular stroma during periods of infusion of 0.05% BSA in PBS or during periods without infusion. In contrast, infusion of IL-1ra for 4 weeks prevented tissue ingrowth in 4 of 6 chambers, and in 2 chambers exhibiting tissue ingrowth, bone formation was decreased. Bone formation remained at a lower level during the subsequent two 4-week periods without infusion after IL-1ra was discontinued, compared to samples prior to the IL-1ra treatment. CONCLUSION: The results showed that tissue ingrowth and bone formation were suppressed in an in vivo model by continuous infusion of IL-1ra at an early phase of tissue regeneration and differentiation.


Assuntos
Osteogênese/efeitos dos fármacos , Receptores de Interleucina-1/agonistas , Sialoglicoproteínas/farmacologia , Fosfatase Ácida/metabolismo , Animais , Técnicas Imunoenzimáticas , Bombas de Infusão , Proteína Antagonista do Receptor de Interleucina 1 , Isoenzimas/metabolismo , Masculino , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/patologia , Coelhos , Proteínas Recombinantes/farmacologia , Fosfatase Ácida Resistente a Tartarato , Tíbia/efeitos dos fármacos , Tíbia/metabolismo , Tíbia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...