Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 9(4): e2104247, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34862761

RESUMO

Formation of membrane-less organelles by self-assembly of disordered proteins can be triggered by external stimuli such as pH, salt, or temperature. These organelles, called biomolecular condensates, have traditionally been classified as liquids, gels, or solids with limited subclasses. Here, the authors show that a thermal trigger can lead to formation of at least two distinct liquid condensed phases of the fused in sarcoma low complexity (FUS LC) domain. Forming FUS LC condensates directly at low temperature leads to formation of metastable, kinetically trapped condensates that show arrested coalescence, escape from which to untrapped condensates can be achieved via thermal annealing. Using experimental and computational approaches, the authors find that molecular structure of interfacial FUS LC in kinetically trapped condensates is distinct (more ß-sheet like) compared to untrapped FUS LC condensates. Moreover, molecular motion within kinetically trapped condensates is substantially slower compared to that in untrapped condensates thereby demonstrating two unique liquid FUS condensates. Controlling condensate thermodynamic state, stability, and structure with a simple thermal switch may contribute to pathological protein aggregate stability and provides a facile method to trigger condensate mixing for biotechnology applications.


Assuntos
Condensados Biomoleculares/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Fenômenos Bioquímicos , Condensados Biomoleculares/química , Cinética , Agregados Proteicos , Estabilidade Proteica , Proteína FUS de Ligação a RNA/química , Termodinâmica
2.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34916288

RESUMO

Cells contain membraneless compartments that assemble due to liquid-liquid phase separation, including biomolecular condensates with complex morphologies. For instance, certain condensates are surrounded by a film of distinct composition, such as Ape1 condensates coated by a layer of Atg19, required for selective autophagy in yeast. Other condensates are multiphasic, with nested liquid phases of distinct compositions and functions, such as in the case of ribosome biogenesis in the nucleolus. The size and structure of such condensates must be regulated for proper biological function. We leveraged a bioinspired approach to discover how amphiphilic, surfactant-like proteins may contribute to the structure and size regulation of biomolecular condensates. We designed and examined families of amphiphilic proteins comprising one phase-separating domain and one non-phase-separating domain. In particular, these proteins contain the soluble structured domain glutathione S-transferase (GST) or maltose binding protein (MBP), fused to the intrinsically disordered RGG domain from P granule protein LAF-1. When one amphiphilic protein is mixed in vitro with RGG-RGG, the proteins assemble into enveloped condensates, with RGG-RGG at the core and the amphiphilic protein forming the surface film layer. Importantly, we found that MBP-based amphiphiles are surfactants and influence droplet size, with increasing surfactant concentration resulting in smaller droplet radii. In contrast, GST-based amphiphiles at increased concentrations coassemble with RGG-RGG into multiphasic structures. We propose a mechanism for these experimental observations, supported by molecular simulations of a minimalist model. We speculate that surfactant proteins may play a significant role in regulating the structure and function of biomolecular condensates.


Assuntos
Condensados Biomoleculares/química , Proteínas/química , Tensoativos/química , Adsorção , Simulação por Computador , Glutationa Transferase/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas Ligantes de Maltose/química , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Proteínas Recombinantes de Fusão/química
3.
Protein Sci ; 30(7): 1371-1379, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33934416

RESUMO

We present improvements to the hydropathy scale (HPS) coarse-grained (CG) model for simulating sequence-specific behavior of intrinsically disordered proteins (IDPs), including their liquid-liquid phase separation (LLPS). The previous model based on an atomistic hydropathy scale by Kapcha and Rossky (KR scale) is not able to capture some well-known LLPS trends such as reduced phase separation propensity upon mutations (R-to-K and Y-to-F). Here, we propose to use the Urry hydropathy scale instead, which was derived from the inverse temperature transitions in a model polypeptide with guest residues X. We introduce two free parameters to shift (Δ) and scale (µ) the overall interaction strengths for the new model (HPS-Urry) and use the experimental radius of gyration for a diverse group of IDPs to find their optimal values. Interestingly, many possible (Δ, µ) combinations can be used for typical IDPs, but the phase behavior of a low-complexity (LC) sequence FUS is only well described by one of these models, which highlights the need for a careful validation strategy based on multiple proteins. The CG HPS-Urry model should enable accurate simulations of protein LLPS and provide a microscopically detailed view of molecular interactions.


Assuntos
Simulação por Computador , Proteínas Intrinsicamente Desordenadas/química , Modelos Moleculares , Interações Hidrofóbicas e Hidrofílicas
4.
J Phys Chem B ; 125(14): 3441-3451, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33661634

RESUMO

This perspective article highlights recent progress and emerging challenges in understanding the formation and function of membraneless organelles (MLOs). A long-term goal in the MLO field is to identify the sequence-encoded rules that dictate the formation of compositionally controlled biomolecular condensates, which cells utilize to perform a wide variety of functions. The molecular organization of the different components within a condensate can vary significantly, ranging from a homogeneous mixture to core-shell droplet structures. We provide many examples to highlight the richness of the observed behavior and potential research directions for improving our mechanistic understanding. The tunable environment within condensates can, in principle, alter enzymatic activity significantly. We examine recent examples where this was demonstrated, including applications in synthetic biology. An important question about MLOs is the role of liquid-like material properties in biological function. We discuss the need for improved quantitative characterization tools and the development of sequence-structure-dynamics relationships.


Assuntos
Organelas
5.
Nucleic Acids Res ; 48(22): 12593-12603, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33264400

RESUMO

Ribonucleoprotein (RNP) granules are membraneless organelles (MLOs), which majorly consist of RNA and RNA-binding proteins and are formed via liquid-liquid phase separation (LLPS). Experimental studies investigating the drivers of LLPS have shown that intrinsically disordered proteins (IDPs) and nucleic acids like RNA and other polynucleotides play a key role in modulating protein phase separation. There is currently a dearth of modelling techniques which allow one to delve deeper into how polynucleotides play the role of a modulator/promoter of LLPS in cells using computational methods. Here, we present a coarse-grained polynucleotide model developed to fill this gap, which together with our recently developed HPS model for protein LLPS, allows us to capture the factors driving protein-polynucleotide phase separation. We explore the capabilities of the modelling framework with the LAF-1 RGG system which has been well studied in experiments and also with the HPS model previously. Further taking advantage of the fact that the HPS model maintains sequence specificity we explore the role of charge patterning on controlling polynucleotide incorporation into condensates. With increased charge patterning we observe formation of structured or patterned condensates which suggests the possible roles of polynucleotides in not only shifting the phase boundaries but also introducing microscopic organization in MLOs.


Assuntos
Proteínas/genética , Proteínas de Ligação a RNA/genética , RNA/genética , Ribonucleoproteínas/genética , Simulação por Computador , Proteínas Intrinsicamente Desordenadas/genética , Extração Líquido-Líquido , Modelos Moleculares , Organelas/genética , Polinucleotídeos/química , Polinucleotídeos/genética , Domínios Proteicos/genética , Proteínas/química
6.
Proc Natl Acad Sci U S A ; 117(21): 11421-11431, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32393642

RESUMO

Phase separation of intrinsically disordered proteins (IDPs) commonly underlies the formation of membraneless organelles, which compartmentalize molecules intracellularly in the absence of a lipid membrane. Identifying the protein sequence features responsible for IDP phase separation is critical for understanding physiological roles and pathological consequences of biomolecular condensation, as well as for harnessing phase separation for applications in bioinspired materials design. To expand our knowledge of sequence determinants of IDP phase separation, we characterized variants of the intrinsically disordered RGG domain from LAF-1, a model protein involved in phase separation and a key component of P granules. Based on a predictive coarse-grained IDP model, we identified a region of the RGG domain that has high contact probability and is highly conserved between species; deletion of this region significantly disrupts phase separation in vitro and in vivo. We determined the effects of charge patterning on phase behavior through sequence shuffling. We designed sequences with significantly increased phase separation propensity by shuffling the wild-type sequence, which contains well-mixed charged residues, to increase charge segregation. This result indicates the natural sequence is under negative selection to moderate this mode of interaction. We measured the contributions of tyrosine and arginine residues to phase separation experimentally through mutagenesis studies and computationally through direct interrogation of different modes of interaction using all-atom simulations. Finally, we show that despite these sequence perturbations, the RGG-derived condensates remain liquid-like. Together, these studies advance our fundamental understanding of key biophysical principles and sequence features important to phase separation.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas Intrinsicamente Desordenadas/química , RNA Helicases/química , Substituição de Aminoácidos , Arginina/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Citoplasma/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Microrganismos Geneticamente Modificados , Simulação de Dinâmica Molecular , Transição de Fase , Domínios Proteicos , RNA Helicases/genética , RNA Helicases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Temperatura , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...