Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 26(26): 26883-26892, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31302891

RESUMO

A highly uniform 3D flower-like hierarchical AgCl microsphere was prepared by sonochemical method with the existence of ß-dextrin. The 3D flower-like hierarchical structure can be ascribed to the existence of ß-dextrin, which provides nucleation sites for the growth of nanosheets because of the strong interaction between ß-dextrin and Ag+. The 3D flower-like hierarchical AgCl microspheres were assembled by numerous interleaving nanosheet petals with small thickness. Benefiting from the unique structural features, the as-prepared 3D flower-like hierarchical AgCl microsphere exhibited higher degradation efficiency with degrading 98.17% of methylene blue (MB) and 88.50% of tetracycline (TC) within 40 min, which were both remarkably higher than those of irregular AgCl under visible light irradiation. Besides, the photocatalytic degradation rate constant of 3D flower-like hierarchical AgCl microsphere (0.063 min-1) for MB was 3.94 times higher than that of irregular AgCl (0.016 min-1). Moreover, a possible mechanism for the formation and excellent photocatalytic performance of 3D flower-like hierarchical AgCl microsphere was also proposed.


Assuntos
Microesferas , Nanoestruturas/química , Compostos de Prata/química , Catálise , Dextrinas/química , Poluentes Ambientais/química , Luz , Azul de Metileno/química , Processos Fotoquímicos , Tetraciclina/química , Difração de Raios X
2.
Ultrason Sonochem ; 51: 166-177, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30401624

RESUMO

Various antibiotics in the aquatic systems have threat the aquatic ecosystem balance and the human health. In this study, a degradation treatment method for tetracycline (TC), one of the commonly used antibiotics, was explored by using novel photocatalysts of rGO/Ag2CO3 under simulated sunlight, because conventional treatment methods are not efficient on the removal of TC. rGO/Ag2CO3 nanocomposites were synthesized via a facile photo-ultrasonic assisted reduction method. More than 90% of TC was removed by 1% (weightrGO/weightcomposites) rGO/Ag2CO3 within 60 min at pH = 4, which was about 1.3 times higher than that of pure Ag2CO3. The cycling experiments indicated that 1% rGO/Ag2CO3 was highly stable and could be reused for at least 5 cycles without significant deactivation to its photocatalytic activity. In addition, the effects of pH, temperature, and dosage amount of 1% rGO/Ag2CO3 on photocatalytic degradation were investigated. Meanwhile, the effect of ultrasonic on the degradation of TC was also investigated. This study can provide a new method for the preparation of smaller nanosized materials and photocatalysts with high activity and stability for its environmental or other applications.


Assuntos
Carbonatos/química , Grafite/química , Óxidos/química , Fotólise , Compostos de Prata/química , Tetraciclina/química , Ondas Ultrassônicas , Eletroquímica , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Molecular , Oxirredução , Temperatura
3.
Nanoscale Res Lett ; 13(1): 70, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500750

RESUMO

In this study, a novel graphene/Ag3PO4 quantum dot (rGO/Ag3PO4 QD) composite was successfully synthesized via a facile one-step photo-ultrasonic-assisted reduction method for the first time. The composites were analyzed by various techniques. According to the obtained results, Ag3PO4 QDs with a size of 1-4 nm were uniformly dispersed on rGO nanosheets to form rGO/Ag3PO4 QD composites. The photocatalytic activity of rGO/Ag3PO4 QD composites was evaluated by the decomposition of methylene blue (MB). Meanwhile, effects of the surfactant dosage and the amount of rGO on the photocatalytic activity were also investigated. It was found that rGO/Ag3PO4 QDs (WrGO:Wcomposite = 2.3%) composite exhibited better photocatalytic activity and stability with degrading 97.5% of MB within 5 min. The improved photocatalytic activities and stabilities were majorly related to the synergistic effect between Ag3PO4 QDs and rGO with high specific surface area, which gave rise to efficient interfacial transfer of photogenerated electrons and holes on both materials. Moreover, possible formation and photocatalytic mechanisms of rGO/Ag3PO4 QDs were proposed. The obtained rGO/Ag3PO4 QDs photocatalysts would have great potentials in sewage treatment and water splitting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...