Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 56(4): 881-901, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21248393

RESUMO

GATE (Geant4 Application for Emission Tomography) is a Monte Carlo simulation platform developed by the OpenGATE collaboration since 2001 and first publicly released in 2004. Dedicated to the modelling of planar scintigraphy, single photon emission computed tomography (SPECT) and positron emission tomography (PET) acquisitions, this platform is widely used to assist PET and SPECT research. A recent extension of this platform, released by the OpenGATE collaboration as GATE V6, now also enables modelling of x-ray computed tomography and radiation therapy experiments. This paper presents an overview of the main additions and improvements implemented in GATE since the publication of the initial GATE paper (Jan et al 2004 Phys. Med. Biol. 49 4543-61). This includes new models available in GATE to simulate optical and hadronic processes, novelties in modelling tracer, organ or detector motion, new options for speeding up GATE simulations, examples illustrating the use of GATE V6 in radiotherapy applications and CT simulations, and preliminary results regarding the validation of GATE V6 for radiation therapy applications. Upon completion of extensive validation studies, GATE is expected to become a valuable tool for simulations involving both radiotherapy and imaging.


Assuntos
Modelos Teóricos , Método de Monte Carlo , Radioterapia/métodos , Tomografia Computadorizada por Raios X/métodos , Benchmarking , Elétrons/uso terapêutico , Humanos , Movimento (Física) , Fótons/uso terapêutico , Tomografia por Emissão de Pósitrons , Terapia com Prótons , Reprodutibilidade dos Testes
2.
Phys Med Biol ; 56(3): 793-809, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21239844

RESUMO

Positron emission tomography (PET) images suffer from low spatial resolution and signal-to-noise ratio. Accurate modelling of the effects affecting resolution within iterative reconstruction algorithms can improve the trade-off between spatial resolution and signal-to-noise ratio in PET images. In this work, we present an original approach for modelling the resolution loss introduced by physical interactions between and within the crystals of the tomograph and we investigate the impact of such modelling on the quality of the reconstructed images. The proposed model includes two components: modelling of the inter-crystal scattering and penetration (interC) and modelling of the intra-crystal count distribution (intraC). The parameters of the model were obtained using a Monte Carlo simulation of the Philips GEMINI GXL response. Modelling was applied to the raw line-of-response geometric histograms along the four dimensions and introduced in an iterative reconstruction algorithm. The impact of modelling interC, intraC or combined interC and intraC on spatial resolution, contrast recovery and noise was studied using simulated phantoms. The feasibility of modelling interC and intraC in two clinical (18)F-NaF scans was also studied. Measurements on Monte Carlo simulated data showed that, without any crystal interaction modelling, the radial spatial resolution in air varied from 5.3 mm FWHM at the centre of the field-of-view (FOV) to 10 mm at 266 mm from the centre. Resolution was improved with interC modelling (from 4.4 mm in the centre to 9.6 mm at the edge), or with intraC modelling only (from 4.8 mm in the centre to 4.3 mm at the edge), and it became stationary across the FOV (4.2 mm FWHM) when combining interC and intraC modelling. This improvement in resolution yielded significant contrast enhancement, e.g. from 65 to 76% and 55.5 to 68% for a 6.35 mm radius sphere with a 3.5 sphere-to-background activity ratio at 55 and 215 mm from the centre of the FOV, respectively, without introducing additional noise. Patient images confirmed the usefulness of interC and intraC modelling for improving spatial resolution and contrast. Based on Monte Carlo simulated data, we conclude that four-dimensional modelling of the inter- and intra-crystal interactions during the reconstruction process yields a significantly improved contrast to noise ratio and the stationarity of the spatial resolution in the reconstructed images.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Modelos Teóricos , Tomografia por Emissão de Pósitrons/métodos , Algoritmos , Humanos , Método de Monte Carlo , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...