Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 97(16): 8770-7, 2000 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-10922033

RESUMO

Pseudomonas syringae is a member of an important group of Gram-negative bacterial pathogens of plants and animals that depend on a type III secretion system to inject virulence effector proteins into host cells. In P. syringae, hrp/hrc genes encode the Hrp (type III secretion) system, and avirulence (avr) and Hrp-dependent outer protein (hop) genes encode effector proteins. The hrp/hrc genes of P. syringae pv syringae 61, P. syringae pv syringae B728a, and P. syringae pv tomato DC3000 are flanked by an exchangeable effector locus and a conserved effector locus in a tripartite mosaic Hrp pathogenicity island (Pai) that is linked to a tRNA(Leu) gene found also in Pseudomonas aeruginosa but without linkage to Hrp system genes. Cosmid pHIR11 carries a portion of the strain 61 Hrp pathogenicity island that is sufficient to direct Escherichia coli and Pseudomonas fluorescens to inject HopPsyA into tobacco cells, thereby eliciting a hypersensitive response normally triggered only by plant pathogens. Large deletions in strain DC3000 revealed that the conserved effector locus is essential for pathogenicity but the exchangeable effector locus has only a minor role in growth in tomato. P. syringae secretes HopPsyA and AvrPto in culture in a Hrp-dependent manner at pH and temperature conditions associated with pathogenesis. AvrPto is also secreted by Yersinia enterocolitica. The secretion of AvrPto depends on the first 15 codons, which are also sufficient to direct the secretion of an Npt reporter from Y. enterocolitica, indicating that a universal targeting signal is recognized by the type III secretion systems of both plant and animal pathogens.


Assuntos
Proteínas de Bactérias/metabolismo , Pseudomonas/metabolismo , Proteínas de Bactérias/genética , Mosaicismo , Pseudomonas/genética
2.
J Bacteriol ; 181(16): 4790-7, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10438746

RESUMO

We present here data showing that the Avr proteins HrmA and AvrPto are secreted in culture via the native Hrp pathways from Pseudomonas syringae pathovars that produce these proteins. Moreover, their secretion is strongly affected by the temperature and pH of the culture medium. Both HrmA and AvrPto were secreted at their highest amounts when the temperature was between 18 and 22 degrees C and when the culture medium was pH 6.0. In contrast, temperature did not affect the secretion of HrpZ. pH did affect HrpZ secretion, but not as strongly as it affected the secretion of HrmA. This finding suggests that there are at least two classes of proteins that travel the P. syringae pathway: putative secretion system accessory proteins, such as HrpZ, which are readily secreted in culture; and effector proteins, such as HrmA and AvrPto, which apparently are delivered inside plant cells and are detected in lower amounts in culture supernatants under the appropriate conditions. Because HrmA was shown to be a Hrp-secreted protein, we have changed the name of hrmA to hopPsyA to reflect that it encodes a Hrp outer protein from P. syringae pv. syringae. The functional P. syringae Hrp cluster encoded by cosmid pHIR11 conferred upon P. fluorescens but not Escherichia coli the ability to secrete HopPsyA in culture. The use of these optimized conditions should facilitate the identification of additional proteins traveling the Hrp pathway and the signals that regulate this protein traffic.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Pseudomonas/metabolismo , Proteínas de Bactérias/genética , Técnicas Bacteriológicas , Transporte Biológico/fisiologia , Meios de Cultura , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Mutagênese , Plasmídeos , Pseudomonas/genética , Pseudomonas/crescimento & desenvolvimento , Pseudomonas fluorescens/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...